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Abstract

We consider the problem of predicting the surface pronun-
ciations of a word in conversational speech, using a model
of pronunciation variation based on articulatory features. We
build context-dependent decision trees for both phone-based
and feature-based models, and compare their perplexities on
conversational data from the Switchboard Transcription Project.
We find that a fully-factored model, with separate decision
trees for each articulatory feature, does not perform well, but
a feature-based model using a smaller number of “feature bun-
dles” outperforms both the fully-factored model and a phone-
based model. The articulatory feature-based decision trees are
also much more robust to reductions in training data. We also
analyze the usefulness of various context variables.

Index Terms: pronunciation modeling, articulatory features

1. Introduction
Modeling pronunciation variation has long been a challenging
issue in automatic speech recognition research. In conversa-
tional speech, words often do not adhere to their dictionary
pronunciations, resulting in a mismatch with standard base-
form dictionaries. This issue has been analyzed in several stud-
ies [10, 6], which suggest that extreme variation in conversa-
tional speech accounts for a significant amount of the degrada-
tion in recognizer performance relative to read speech.

Most approaches to pronunciation modeling are based on
predicting a sequence of surface phones from a sequence of
underlying phones [13, 5]. This approach often produces an
improvement in recognition performance, but not as much as
one might hope. A possible reason for this is that pronun-
ciation variation is often not the result of replacement of one
entire phone for another, but rather the result of more gradual
changes [14]. This has motivated efforts to model this variation
on the more fine-grained scale of articulatory features [9, 2, 12].

In this work, we consider an extension of the models in [9].
In particular, we replace their context-independent surface fea-
ture distributions with context-dependent ones, modeled using
decision trees, and study the predictive power of various types
of context dependency by measuring perplexity with respect to
a test set of conversational speech.

While this work is motivated by the task of speech recogni-
tion, we study the problem of pronunciation modeling in isola-
tion, and note that it is an important problem in its own right (as
part of the study of phonology) as well as necessary for other
tasks (such as conversational speech synthesis [11]).

2. Feature-based pronunciation modeling
The pronunciation models we consider are based on ideas from
autosegmental [3] and articulatory [1] phonology. In such a
model, the typical single sequence of phones/phonemes is re-
placed with multiple sequences of features, which evolve in
a semi-independent manner during the course of an utterance.
Pronunciation variation, under such a model, is the result of (a)
inter-feature asynchrony, i.e. the phenomenon of one articula-
tory feature “getting ahead of” another; and (b) within-feature
substitutions. For example, feature asynchrony accounts for ef-
fects such as vowel nasalization as in “can’t” → /k ae n n t/
and epenthetic stop insertion as in “warmth” → /w ao r m p th/
(in both cases, the velum changes state before the other articu-
lators). Feature substitutions account for, e.g., incomplete stop
closures as in “probably” → /p r aa w l iy/.

This type of model can be represented as a dynamic
Bayesian network (DBN), as shown in Fig. 1. This figure rep-
resents a model with two feature streams, but in general an ar-
bitrary number may be included. Since the features may not
be synchronized, at any given time t each feature f has a cor-
responding underlying phoneme φf

t that it is currently “aiming
for”, and a corresponding underlying (target) feature value uf

t .
The degree of asynchrony is controlled by the async variable
and state indices if (see [7] for more details).

Figure 1: A dynamic Bayesian network (DBN) corresponding
to a feature-based pronunciation model with two features.



3. Context-dependent feature-based models
Fig. 1 depicts a model with context-independent feature substi-
tutions; that is, each surface feature distribution is conditioned
only on its corresponding target feature value. This model was
found in [9] to outperform certain phone-based models on a lex-
ical access task. Here we study the possible benefit of model-
ing the dependence of each surface feature distribution on other
variables, such as the feature’s previous value (due to inertia)
and its next target (anticipatory coarticulation), as well as the
values of other features. In other words, we consider adding
edges in the DBN from additional context variables to the sur-
face feature variables, and investigate the predictive power of
various combinations of such dependencies.

The context-dependent models we consider here are con-
ditional distributions with potentially many conditioning vari-
ables, so it is not feasible to enumerate all of the distributions
and learn their parameters by counting frequencies in training
data. A natural approach for modeling such distributions is de-
cision trees. Similarly to previous work on phone-based pro-
nunciation modeling [13], we learn one decision tree per un-
derlying value per feature, using data that has been aligned.
That is, we first align the data, i.e. we find the most likely val-
ues of all of the hidden variables, which are potential context
variables. Given the alignments, we then learn decision trees
predicting each surface feature value conditioned on the cho-
sen set of context variables in the alignment. In order to align
the data, we use the context-independent feature model. Again,
this is analogous to previous work on phone-based models, in
which phones are aligned to phonemes using a simple context-
independent aligner, and the more complex decision trees are
learned from the aligned data.

It is not meaningful to compare a traditional, segmental
phone-based pronunciation model with a frame-based feature
model. For purposes of making a direct comparison, we train
phone-based decision trees on the frame level as well; that is,
we perform a frame-level phonetic alignment and train decision
trees for the surface realization of each phoneme in each frame.

4. Evaluation
There are several ways to evaluate pronunciation models: by
incorporating them into a speech recognizer, by using them in
a lexical access task as in [9], or by measuring how well they
predict a test set of pronunciations as in [13]. Here we follow
the third approach, and measure the perplexity of the model on
a test set of surface pronunciations. This allows us to quickly
experiment with many combinations of context variables.

Since the feature-based model is inherently frame-based,
we measure the frame-level perplexity. As mentioned above,
this makes it difficult to compare with more traditional models
that operate on the segment level. We therefore also implement
a frame-based phone model using decision trees.

The goal of our evaluation is to measure how well the
pronunciation model predicts the surface forms in a test set,
given the underlying words w. Let the surface phone label at
time frame t be st and the corresponding N -feature vector be
{s1

t , . . . , s
N
t } = s1:N

t . Our goal, therefore, is to accurately
model p(s1, . . . , sT |w) = p(s1:N

1 , . . . , s1:N
T |w), where T is

the number of frames in the test set. Since there are many
ways to produce a given surface form, corresponding to dif-
ferent alignments (i.e. different settings of the hidden variables
such as the underlying phonemes, feature targets, etc.), we need

to sum over all of the possible alignments ai:

p(s1, . . . , sT |w) = p(s1:N
1 , . . . , s1:N

T |w)

=
X

i

p(ai|w)p(s1:N
1 , . . . , s1:N

T |ai, w)

We make the typical assumptions that the surface form is inde-
pendent of the word given the alignment, and that one “correct”
alignment a is much more likely than all others (i.e. has proba-
bility essentially 1). We further assume that each surface feature
value sf

t is independent of all others given some context vari-
ables cf

t , which are a subset of the information in a. Therefore:

p(s1, . . . , sT |w) = p(s1:N
1 , . . . , s1:N

T |a, w)

=

TY
t=1

NY
f=1

p(sf
t |c

f
t )

In other words, we can compute the probability of a collection
of frames as the product of the feature-specific probabilities in
each frame. Note that the perplexity of the feature-based model
with respect to a set of test frames is, therefore, simply the prod-
uct of perplexities of the individual feature models.

In the context-independent model of [9], the context for
each surface feature is just the current underlying (target) value
for that feature, uf

t . In general, the context can be any set of
variables in the DBN, as long as we don’t induce loops. Our
goal in this work is to study which context variables are most
useful in predicting surface pronunciations.

Under the assumption of a single “correct” alignment, we
evaluate our models by first aligning the test data, i.e. finding the
settings of all hidden variables in the model given the surface
labels and the target word, and then computing the frame-level
perplexity of a test set with T labeled frames:

perp(s1, . . . , sT ) = 2

−1

T

X
t

log2 p(st|ct)

In this expression, p(st|ct) is computed from either the pho-
netic or the feature-based decision trees, via p(st|ct) =QN

f=1 p(sf
t |c

f
t ). The alignment is done exactly in the same way

as for training, i.e. using the context-independent model.

5. Experiments
5.1. Features and data

Our feature-based models use the articulatory features of [7],
which are in turn based on the vocal tract variables of Brow-
man and Goldstein’s articulatory phonology [1]. We start with
seven features, each of which can take on 2-6 discrete values:
lip aperture, tongue tip position and aperture, tongue body posi-
tion and aperture, velum position and glottis aperture. We find
that building a separate tree for each of these features does not
produce good results: Using the best-performing decision trees,
each feature has test set perplexity between 1.1 and 1.5, and the
overall test set perplexity is 4.74. In contrast, even a context-
independent phone model has perplexity 3.65.

This poor performance is presumably because the assump-
tion of independence between the features is too strong. Instead,
we “bundle” the features into three streams that should be more
independent: all tongue features (19 possible underlying values,
and therefore 19 trees); glottis and velum (3 trees); and lip aper-
ture (4 trees). The context questions used by the trees, however,
are still based on the individual features. This factorization of
the feature space yields much better results, as we show below.



For the phone-based models, we predict the surface phones
given various types of phonetic context, expressed as features,
similarly to previous work with phonetic decision trees [13].

We use data from the Switchboard Transcription Project,
a subset of the Switchboard database that has been manually
labeled at a fine phonetic level, including various diacritics [4].
We drop all diacritics except for nasalization and convert the
phone labels to articulatory features. We use a subset containing
90,000 10ms frames of speech, corresponding to about fifteen
minutes of conversation from several speakers. We divide the
data randomly by frame, retaining 60% for training, 20% for
development, and 20% for testing.1

5.2. Decision tree learning

All of the models in our experiments are classification trees,
built using MATLAB’s classregtree class. The trees are
binary branching, with every non-terminal node representing a
decision criterion based on one of the context variables. The
decision tree parameters are tuned on the development set. Ev-
ery leaf node represents a discrete distribution over the possible
output values for the tree, based on the frequencies of frames in
the training data having the corresponding context.

Fig. 2 shows an example decision tree for the lip aperture
feature. This tree has been significantly pruned for ease of view-
ing. This tree is for the case of lip aperture = 2, corresponding
to a medium-open lip opening. According to this tree, if the
previous state of the lip aperture was less than medium-open,
then the surface value of lip aperture will nearly certainly re-
main medium-open. Otherwise (i.e., if the previous lip aperture
was wide), the surface lip aperture may be either medium or
wide, depending on the location and aperture of the tongue.

The decision tree learning often produces distributions that
assign zero probability to some output values. In order to avoid
assigning zero probability to any test label s, we apply a simple
Lidstone’s law smoothing at each node n in the tree:

psmooth(s|n) =
count(s at node n) + λ

count(s at any node) + λM
,

where M is the number of nodes in the tree. The value of λ is
tuned on the development set.

5.3. Context variables

The context variables we use are the current, previous and next
distinct values of several variables. Table 1 provides a simpli-
fied example with only three features and seven frames. The
table shows the underlying (target) values of the three features
in each frame. At frame 5, the values of (distinct previous, cur-
rent, distinct next) are as follows:

• Tongue tip position: (1, 0, null)

• Glottis aperture: (null, 1, null)

• Lip aperture: (1, 0, 2)

In order to account for the fact that coarticulation affects
nearby frames more than distant ones, we also consider a “dis-
tance” context variable, which is the number of frames to the
nearest target value transition on either side. In this example,
the distances to the previous/next distinct targets are:

• Tongue tip position: (-0, null)

1The random division causes some labels to be divided between the
test and training sets, which may lead to some over-fitting; however, this
should only bias the results against our feature-based models by giving
an advantage to the model with more parameters, i.e. the phone model.

• Glottis aperture: (null, null)

• Lip aperture: (-3, +2)

Frame 1 2 3 4 5 6 7
Tongue tip position 0 0 1 1 0 0 0
Glottis aperture 1 1 1 1 1 1 1
Lip aperture 1 1 0 0 0 0 2

Table 1: Example values for three features.

Phone-based Feature-based
1. Context-independent:

3.6483 2.5672
2. Basic context-dependent:

2.5189 2.1511
3. Context-dep. + previous surface value

1.6449 1.7861
4. Context-dep. + prev. surf. + distance:

2.0784 1.6850
5. Cross-feature context-dep. + prev. surf.:

N/A 1.5664
6. Cross-feat. context-dep. + prev. surf. + phone context:

N/A 1.5248
7. Cross-feat. context-dep. + prev. surf. + cross-phone context:

N/A 1.5237

Table 2: Test set perplexities for various models.

We tested decision tree models conditioned on the follow-
ing sets of context variables. Except where noted, we used
the analogous context variables to test both phone-based and
feature-based models.

1. Context-independent: The context is only the target
value for the phone/feature at the current frame.

2. Basic context-dependent: The target value at the current
frame, and the next/previous distinct target value.

3. Context-dependent + previous surface value: Same
as above, plus the last distinct observed value of the
phone/feature.

4. Context-dependent + previous surface value + distance:
Same as above, plus the distance in frames to the previ-
ous/next distinct target value.
We also tested the following versions of the feature-
based model, which use context information not appli-
cable to a phone-based model:

5. Cross-feature context-dependent + previous surface
value: Same as (3), but with target and actual values for
all features, not just the one being predicted.

6. Cross-feature context-dependent + previous surface
value + phone context: Same as (5), plus the target
phones corresponding to the current, previous, and next
targets of the current feature.

7. Cross-feature context-dependent + previous surface
value + cross-phone context: Same as (6), plus the cur-
rent, previous, and next target phones corresponding to
all other features.

In addition, we also tested several models with varying
amounts of training data. The results are shown in Figure 3.
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Figure 2: A sample decision tree, predicting the surface lip aperture given that the target lip aperture is 2 (medium-open). The “yes”
branch of each question node is always the left branch.

Figure 3: Test set perplexity vs. training set size.

6. Discussion and conclusions
We have found that context-dependent articulatory feature de-
cision trees outperform context-independent trees, as well as
frame-level phone-based trees, for predicting manual phonetic
labels in the Switchboard Transcription Project data. In addi-
tion, the best feature-based model (model 7) degrades much
more slowly than the best phone-based model (model 3) as the
amount of training data is reduced. In fact, a simpler feature-
based model (model 5), which is slightly worse than the best
when using the full training set, performs slightly better when
training data is reduced.

We note that, in these experiments, the full power of the
feature-based model is not exploited, because the surface pro-
nunciations are transcribed phonetically. For example, it may
be beneficial to model the fact that nasalized vowels are typi-
cally nasalized only for a portion of the vowel. We have also
ignored some effects such as incomplete stop closures and an-
ticipatory rounding. Such effects could be handled in a feature-
based acoustic model, but are missing from the phonetic tran-
scription. We are currently collecting finer-grained feature-level
transcriptions of Switchboard utterances (an extension of the
transcription effort described in [8]), so that we may carry out
more detailed experiments in the future. Such data collections
are extremely laborious, so an additional direction for future
research is to explore the tradeoff between amount and qual-
ity/level of detail of the training labels.

Our next steps are to test the most successful models from
these experiments via lexical access experiments as in [9] and
end-to-end recognition experiments.
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