Task-Independent Language Understanding

To develop a general-purpose neural network encoder for text which makes it possible to solve any new language understanding task using only enough training data to **define the possible outputs**.

it starts learning a new task.

To develop a neural network model that already understands English when

This

Train large forward and backward deep LSTM language models.

Peters et al. '18

Train large (~100m-param) forward and backward deep LSTM language models.

Train large (~100m-param) forward and backward deep LSTM language models.

Train large (~100m-param) forward and backward deep LSTM language models.

Task Output

Peters et al. '18

6

Peters et al. '18

Case Study: ELMo Best paper at NAACL 2018!

The Rest of the Talk

- The GLUE language understanding benchmark Wang et al. '18
 - ...and successes with unsupervised pretraining and fine-tuning on GLUE Radford et al. '18 (OpenAl GPT), Devlin et al. '18 (BERT)
- A few things we've learned about modern models Tenney et al. '19, Warstadt et al. '19
- Recent progress and the updated SuperGLUE benchmark Liu et al. '19a,b, Nangia & Bowman '19, Wang et al. '19a
- Easy transfer learning with STILTs Phang et al. '19, Wang et al. '19b

GLUE: What is it?

The General Language Understanding Evaluation (GLUE):

An open-ended competition and evaluation platform for general-purpose sentence encoders.

Last Spring: GLUE

Wang, Singh, Michael, Hill, Levy & Bowman '18

- Nine English-language sentence understanding tasks based on existing data, varying in:
 - Task difficulty
 - Training data volume and degree of training set-test set similarity
 - Language style/genre
- Simple task APIs: All sentence or sentence-pair classification.
- Simple leaderboard API: Upload predictions for a test set (Kaggle-style)
 - Usable with any kind of method/model!

GLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Domain			
	Single-Sentence Tasks								
CoLA	8.5k	1k	1k	acceptability	Matthews corr.	misc.			
SST-2	67k	872	1.8k	sentiment	acc.	movie reviews			
	Similarity and Paraphrase Tasks								
MRPC	3.7k	408	1.7k	paraphrase	acc./F1	news			
STS-B	7k	1.5k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.			
QQP	364k	40k	391k	paraphrase	acc./F1	social QA quest			
	Inference Tasks								
MNLI	393k	20k	20k	NLI	matched acc./mismatched acc.	misc.			
QNLI	108k	5.7k	5.7k	QA/NLI	acc.	Wikipedia			
RTE	2.5k	276	3k	NLI	acc.	misc.			
WNLI	634	71	146	coreference/NLI	acc.	fiction books			

Wang, Singh, Michael, Hill, Levy & Bowman '18

GLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Domain
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA quest
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. fiction books

Wang, Singh, Michael, Hill, Levy & Bowman '18

The Corpus of Linguistic Acceptability (CoLA) Warstadt et al. '18

- - Who do you think that will question Seamus first? *
 - The gardener planted roses in the garden. \checkmark

Corpus	Train	Dev	Test	Task	Metrics	Domain		
Single-Sentence Tasks								
CoLA	8.5k	1k	1k	acceptability	Matthews corr.	misc.		
SST-2	67k	872	1.8k	sentiment	acc.	movie reviews		
				Similarity and F ₁₆ aph		Wang, Singh, Michael, Hill, Levy & Bowr		

 Binary classification: Is some string of words a possible English sentence. Data of this form is a major source of evidence in linguistic theory. Sentences derived from books and articles on morphology, syntax, and semantics.

Multi-Genre Natural Language Inference (MNLI) Williams et al. '18

Corpus	 Balanced classification for pairs of sentences into <i>entailment</i>, <i>contradiction</i>, and <i>neutral</i> Training set sentences drawn from five written and spoken genres. Dev/test sets divided into a matched set and a <i>mismatched</i> set with five more. 								
CoLA SST-2	P: The Old One always comforted Ca'daan, except today. H: Ca'daan knew the Old One very well. neutral								
MRPC	3.7k	408	1.7k	paraphrase	acc./F1	news			
STS-B	7k	1.5k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.			
QQP	364K	40k	391 k	paraphrase	acc./F1	social QA question			
Inference Tasks									
MNLI	393k	20k	20k	NLI	matched acc./mismatched acc.	misc.			
QNLI	108k	5.7k	5.7k	QA/NLI	acc.	Wikipedia			
RTE	2.5k	276	3k	NLI	ac Wong Singh Miak	and Hill Lova 9 Bour			
WNLI	634	71	146	coreference/NLI ¹⁷	ac	iaei, miii, Levy & DOWI			

GLUE: What methods work?

Overall GLUE Score

95

- - Transformer encoder architecture.
 - Entire network is *fine-tuned* for each task; few new parameters are added.

OpenAl's GPT Language Model

• Same basic idea as ELMo, but many changes, including:

Radford et al. '18

- - Transformer encoder architecture.
 - Entire network is *fine-tuned* for each task; few new parameters are added.
 - Pretraining is on long spans of running text, not just isolated sentences.

OpenAl's GPT Language Model

• Same basic idea as ELMo, but many changes, including:

Radford et al. '18

Radford et al. '18

Devlin et al. '18 see Baevski et al. '19 for similar concurrent work

The BERT Model

- Same basic idea as GPT with several changes, including: \bullet
 - Two different unlabeled data tasks in place of language modeling.
 - These allow the model to process both directions together with the \bullet same network at training time.
 - Bigger (100M => 300M params). \bullet

Devlin et al. '18 see Baevski et al. '19 for similar concurrent work

Devlin et al. '18

see Baevski et al. '19 for similar concurrent work

Why does BERT work so well? What does BERT know?

Edge Probing with ELMo

ELMo

How much can we trust our conclusions?

How much can we trust these conclusions?

- Studies like ours that use auxiliary analysis datasets are a <u>common tool</u> for trying to understand what models like BERT know.
- There are many ways to design such a study, and each bakes in a few substantial assumptions.
 - Edge probing assumes that if a model knows about coreference, then it should be possible to extract that information with a simple MLP model.
- Do different probing methods give us the same answer?

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman '19

Case Study: NPI Licensing

- *NPI* words like *any* or *ever* can only occur in the scope of specific linguistic *licensing* environments like negations or conditionals,
 - Common in natural data.
 - Well-characterized in the linguistics literature.
 - Depends on long-distance dependencies and complex structures, rather than local co-occurrence.
 - Should be learnable from raw text alone.
- Does BERT know when NPIs are licensed? \bullet

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman '19

Mary hasn't eaten *any* cookies. (1)*Mary has eaten *any* cookies. (2)

Case Study: NPI Licensing

- *NPI* words like *any* or *ever* can only occur in the scope of specific linguistic *licensing* environments like negations or conditionals,
 - Common in natural data.
 - Well-characterized in the linguistics literature.
 - Depends on long-distance dependencies and complex structures, rather than local • Should be learnable from a many ways as we can

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman '19

Mary hasn't eaten *any* cookies. *Mary has eaten *any* cookies.

Case Study: NPI Licensing

• Evaluation data: Nine custom NPI test sets isolating different NPI licensors:

*Those boys say **that** [the doctors *ever* went to an art gallery.] *Those boys *ever* say **that** [the doctors went to an art gallery.] Those boys say **that** [the doctors *often* went to an art gallery.] Those boys *often* say **that** [the doctors went to an art gallery.]

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman '19

Let's teach the model to judge acceptability.

*Who do you think that will question Seamus first? *Usually, any lion is majestic. The gardener planted roses in the garden. I wrote Blair a letter, but I tore it up before I sent it.

Train: The CoLA general acceptability corpus

Test: NPI environment test sets

Metric: Matthews Correlation (MCC) for acceptability

Let's teach the model to judge acceptability. GloVe Bag-of-Words BERT BERT knows a bit about NPIs, 100% but its not perfect. 75% the garden. 1 tore it up before I sent it. 50% Train: 25%

Usually, any lion is majest The gardener planted r I wrote Blair a letter

ola

The CoLA general acceptability corpus

Test: NPI environment test sets

Matthews Correlation (MCC) for acceptability **Metric:**

Training

0%

What if we train on NPI data directly?

*Those boys say **that** [the doctors *ever* went to an art gallery.] *Those boys *ever* say **that** [the doctors went to an art gallery.] Those boys say **that** [the doctors *often* went to an art gallery.] Those boys *often* say **that** [the doctors went to an art gallery.]

Who do you think that will question Seamus first?

*Usually, any lion is majestic.

The gardener planted roses in the garden.

I wrote Blair a letter, but I tore it up before I sent it.

Train:

NPI training set (hold-one-out by environment) or the CoLA general acceptability corpus

Test: NPI environment test sets

Metric: Matthews Correlation (MCC) for acceptability

What if we train on NPI data directly?

*Those boys say that [the doctors ever went to an art gallery.]

BERT knows something about NPIs, but not all that much.

Usually, any lion is majest The gardener planted r I wrote Blair a letter

¹ the garden. 1 tore it up before I sent it.

Train:

NPI training set (hold-one-out by environment) or the CoLA general acceptability corpus

Test: NPI environment test sets

Metric: Matthews Correlation (MCC) for acceptability

Let's re-structure our data to isolate BERT's knowledge of NPIs...

(1)Mary hasn't eaten *any* cookies. *Mary has eaten *any* cookies. (2)

Train:

NPI training set (hold-one-out by environment) or the CoLA general acceptability corpus

Test: NPI environment test sets

Pair accuracy over acceptability: How often does the **Metric:** model label both versions of a sentence correctly?

BERT knows something about NPIs, but not all that much.

"Mary has eaten any cookies.

Train:

NPI training set (hold-one-out by environment) or the CoLA general acceptability corpus

Test: NPI environment test sets

Pair accuracy over acceptability: How often does the **Metric:** model label both versions of a sentence correctly?

Let's re-structure our data to isolate BERT's knowledge of NPIs...

(1)Mary hasn't eaten *any* cookies. (2)*Mary has eaten *any* cookies.

Train:

NPI training set (hold-one-out by environment) or the CoLA general acceptability corpus

Test: NPI environment test sets

Metric:

Let's re-structure our data to isolate BERT's knowledge of NPIs...

BERT has complete and perfect knowledge of NPI licensing.

"Mary has eaten any cookies.

NPI training set (hold-one-out by environment) or the CoLA general acceptability corpus

Test: NPI environment test sets

Metric:

SESAME STREET

What if we ask BERT directly?

(1)Mary hasn't eaten *any* cookies. *Mary has eaten *any* cookies. (2)

Train:

NPI training set (hold-one-out by environment) or the CoLA general acceptability corpus or use BERT's language modeling head directly

Test: NPI environment test sets

Metric:

What if we ask BERT directly?

BERT does better than chance (50%), but not especially well.

"Mary has eaten any cookies.

Train:

NPI training set (hold-one-out by environment) or the CoLA general acceptability corpus or use BERT's language modeling head directly

Test: NPI environment test sets

Metric:

What if we use probing classifiers?

Those boys wonder **whether** [the doctors *ever* went to an art gallery.] *Those boys *ever* wonder **whether** [the doctors went to an art gallery.] 0 Those boys wonder **whether** [the doctors *often* went to an art gallery.] 0 Those boys *often* wonder **whether** [the doctors went to an art gallery.] *Those boys say **that** [the doctors *ever* went to an art gallery.] 0 *Those boys *ever* say **that** [the doctors went to an art gallery.] Those boys say **that** [the doctors *often* went to an art gallery.] 0 Those boys *often* say **that** [the doctors went to an art gallery.]

Train:

Scope prediction task, training only a small classifier without fine-tuning BERT (hold-one-out over environments)

Test: Scope prediction task

Matthews Correlation (MCC) for scope judgment **Metric:**

What if we use probing classifiers?

BERT knows a bit about NPIs, but its not perfect.

*Those boys ever Those boys say Those boys of

[the doctors went to an art gallery.] the doctors *often* went to an art gallery.] ₃ay **that** [the doctors went to an art gallery.]

0

0

Train:

Scope prediction task, training only a small classifier without fine-tuning BERT (hold-one-out over environments)

Test: Scope prediction task

Matthews Correlation (MCC) for scope judgment **Metric:**

What if we use pro

BERT knows a bit about NPIs, but its not perfect.

art gallery *Those boys ever t [the doctors went 0 Those boys say the doctors ofference to an art gallery. say that [the Lors went to an art gallers] Those boys of 0

Tram. vistion task, training SCUP tine-lun. nments) en.

<u>SK</u>

Test: Scope predic

Met

BERT knows something about NPIs, but not all that much.

Recent Progress on GLUE

Building a Better Muppet

- Lots of follow-up work, including:
 - MT-DNN/ALICE: Multi-task fine-tuning; ensembling \bullet
 - RoBERTa: Simplified objective; more training data lacksquare
 - ALBERT: Modified objective; parameter sharing across layers lacksquare

Liu et al. '19a, Wang et al. '19, Liu et al. '19b, Anonymous '19

GLUE Score

Liu et al. '19

GLUE Score

Liu et al. '19

GLUE Score

46

Anonymous '19 (ICLR)

GLUE Score

- How much headroom does GLUE have left?
- To compute a conservative estimate for each task:
 - Train crowdworkers with instructions, plus twenty \bullet labeled *development set* examples in an interactive training mode.
 - Collect five labels per example for 500 *test set* \bullet examples.

Human Baseline

Nangia & Bowman '19

Nangia & Bowman '19

GLUE Score

Nangia & Bowman '19

GLUE Score

A revised version of GLUE with:

- A new set of eight target tasks...
- ...selected from 30+ submissions to an open call for participation to be easy for humans and hard for BERT.
- A slightly expanded set of task APIs (including) multiple-choice QA, word-in-context classification, and more)

SuperGLUE

{Wang, Pruksachatkun, Nangia, Singh}, Michael, Hill, Levy & Bowman '19

SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedi
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

{Wang, Pruksachatkun, Nangia, Singh}, Michael, Hill, Levy & Bowman '19

The Commitment Bank de Marneffe et al. '19

Three-way NLI classification: Does a speaker utterance entail some embedded clause within that utterance?

Text: B: And yet, uh, I we-, I hope to see employer based, you know, helping out. You know, child, uh, care centers at the place of employment and things like that, that will help out. A: Uh-huh. B: What do you think, do you think we are, setting a trend? **Hypothesis:** they are setting a trend **Entailment:** Unknown

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encycloped
MultiRC	5100	953	1800	QA	F ¹	
ReCoRD	101k	10k	10k	OA 57	{wang, Pru	KSachatkun, Nangia, Singn}, Michael, Hill, Levy & Bov

NultiRC Khashabi et al. '18

Multiple choice reading comprehension QA over paragraphs.

Paragraph: (CNN) – Gabriel García Márquez, widely regarded as one of the most important contemporary Latin American authors, was admitted to a hospital in Mexico earlier this week, according to the Ministry of Health. The Nobel Prize recipient, known as "Gabo," had infections in his lungs and his urinary tract. He was suffering from dehydration, the ministry said. García Márquez, 87, is responding well to antibiotics, but his release date is still to be determined. "I wish him a speedy recovery." Mexican President Enrique Peña wrote on Twitter. García Márquez was born in the northern Colombian town of Aracataca, the inspiration for the fictional town of Macondo, the setting of the 1967 novel "One Hundred Years of Solitude." He won the Nobel Prize for literature in 1982 "for his novels and short stories, in which the fantastic and the realistic are combined in a richly composed world of imagination, reflecting a continent's life and conflicts," according to the Nobel Prize website. García Márquez has spent many years in Mexico and has a huge following there. Colombian President Juan Manuel Santos said his country is thinking of the author. "All of Colombia wishes a speedy recovery to the greatest of all time: Gabriel García Márquez," he tweeted. CNN en Español's Fidel Gutierrez contributed to this story. **Question:** Whose speedy recover did Mexican President Enrique Peña wish on Twitter? **Candidate answers:** Enrique Peña (F), Gabriel Garcia Marquez (T), Gabo (T), Gabriel Mata (F), Fidel *Gutierrez* (F), 87 (F), *The Nobel Prize recipient* (T)

CUFA	400	100	500	
MultiRC	5100	953	1800	QA
ReCoRD	101k	10k	10k	QA
RTE	2500	278	300	NI

SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedi
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

{Wang, Pruksachatkun, Nangia, Singh}, Michael, Hill, Levy & Bowman '19

SuperGLUE Score

95

82.5

70

RoBERTa

Human Estimate

{Wang, Pruksachatkun, Nangia, Singh}, Michael, Hill, Levy & Bowman '19 60

- GLUE and SuperGLUE are built only on English data. \bullet
 - General-purpose pretraining may look quite different in lower-resource languages! lacksquare
- GLUE and SuperGLUE use some naturally occurring and crowdsourced data.
 - Therefore safe to presume that these datasets contain evidence of social bias (see Rudinger et al., lacksquareEthNLP '17).
 - All else being equal, models that learn and use these biases will do better on these benchmarks. lacksquare
 - In SuperGLUE's WinoGender Schema evaluation (Rudinger et al. '18), RoBERTa ~9x more sensitive to irrelevant gender information than humans.

GLUE and SuperGLUE: Limitations

A Handy Trick

- What if you want to solve a hard task with limited training data, but have access to abundant data for another task with that uses similar skills?
- Example: Commitment Bank (250) with MNLI (393k)
- Supplementary Training on Intermediate Labeled-data Tasks (STILTs) is an **easy but very robust** solution:
 - Download a large model like BERT that was pretrained on unlabeled data.
 - Fine tune that model on the *intermediate* labeled-data task.
 - Fine tune the same model further on the target task. \bullet

Muppets on STILTs?

Phang, Févry & Bowman '18

BERT on STILTS

- +1.5 on GLUE w/ MNLI and QQP
- +2.5 on SuperGLUE w/ MNLI
- Clark et al. '19: +3.7 on BoolQ w/ MNLI
- Sap et al. '18: +4 to +8 on commonsense tasks w/ SocialIQA
- MNLI+STILTs built into RoBERTa and ALBERT

Phang, Févry & Bowman '18

BERT on STILTs

- +1.5 GLUE w/ MNLI and QQP +2.5 '19: +3.7 on БооlQ w/ Л Sap et al. '10. r in
- MNLI+STILTs built into RoBERTa and ALBERT

e tasks w/ SocialIQA

Phang, Févry & Bowman '18

LMO	an	
	on	S

SSTE	71.2	38.8	90.6										
\mathbf{MRPC}^{E}	<u>71.3</u>	40.0	88.4										
$\mathbf{Q}\mathbf{Q}\mathbf{P}^{E}$	70.8	34.3	88.6										
\mathbf{STS}^E	71.6	39.9	88.4										
\mathbf{MNLI}^E	72.1	38.9	89.0										
\mathbf{QNLI}^E	71.2	37.2	88.3	81.1/86.9	85.5/81.7	78.9/80.1	74.7	78.0	58.8	22.5*			
\mathbf{RTE}^E	71.2	38.5	87.7	81.1/87.3	86.6/83.2	80.1/81.1	74.6	78.0	55.6	32.4*			
\mathbf{WNLI}^E	70.9	38.4	88.6	78.4/85.9	86.3/82.8	79.1/80.0	73.9	77.9	57.0	11.3*			
DisSent WP^E	71.9	39.9	87.6	81.9/87.2	85.8/82.3	79.0/80.7	74.6	79.1	61.4	23.9*			
MT En-De E	72.1	40.1	87.8	79.9/86.6	86.4/83.2	81.8/82.4	75.9	79.4	58.8	31.0*			
MT En-Ru E	70.4	41.0	86.8	76.5/85.0	82.5/76.3	81.4/81.5	70.1	77.3	60.3	45.1*			
\mathbf{Reddit}^{E}	71.0	38.5	87.7	77.2/85.0	85.4/82.1	80.9/81.7	74.2	79.3	56.7	21.1*			
SkipThought E	71.7	40.6	87.7	79.7/86.5	85.2/82.1	81.0/81.7	75.0	79.1	58.1	52.1*			
MTL GLUE ^{E}	72.1	33.8	90.5	81.1/87.4	86.6/83.0	82.1/83.3	76.2	79.2	61.4	42.3*			
$\mathbf{MTL}\;\mathbf{Non}\textbf{-}\mathbf{GLUE}^{E}$	72.4	39.4	88.8	80.6/86.8	87.1/84.1	83.2/83.9	75.9	80.9	57.8	22.5*			
MTL All ^{E}	<u>72.2</u>	37.9	89.6	79.2/86.4	86.0/82.8	81.6/82.5	76.1	80.2	60.3	31.0*			
BERT with Intermediate Task Training													
Single-Task ^B	78.8	56.6	90.9	88.5/91.8	89.9/86.4	86.1/86.0	83.5	87.9	69.7	56.3			
	78.3	61.3	91.1	87.7/91.4	89.7/86.3	85.0/85.0	83.3	85.9	64.3	43.7*			
\mathbf{SST}^B	78.4	57.4	92.2	86.3/90.0	89.6/86.1	85.3/85.1	83.2	87.4	67.5	43.7*			
\mathbf{MRPC}^{B}	78.3	60.3	90.8	87.0/91.1	89.7/86.3	86.6/86.4	83.8	83.9	66.4	56.3			
$\mathbf{Q}\mathbf{Q}\mathbf{P}^B$	79.1	56.8	91.3	88.5/91.7	90.5/87.3	88.1/87.8	83.4	87.2	69.7	56.3			
STS^B	79.4	61.1	92.3	88.0/91.5	89.3/85.5	86.2/86.0	82.9	87.0	71.5	50.7*			
MNLI ^B	79.6	56.0	91.3	88.0/91.3	90.0/86.7	87.8/87.7	82.9	87.0	76.9	56.3			
\mathbf{QNLI}^B	78.4	55.4	91.2	88.7/92.1	89.9/86.4	86.5/86.3	82.9	86.8	68.2	56.3			
\mathbf{RTE}^B	77.7	59.3	91.2	86.0/90.4	89.2/85.9	85.9/85.7	82.0	83.3	65.3	56.3			
\mathbf{WNLI}^B	76.2	53.2	92.1	85.5/90.0	89.1/85.5	85.6/85.4	82.4	82.5	58.5	56.3			
DisSent WP ^B	78.1	58.1	91.9	87.7/91.2	89.2/85.9	84.2/84.1	82.5	85.5	67.5	43.7*			
MT En-De B	73.9	47.0	90.5	75.0/83.4	89.6/86.1	84.1/83.9	81.8	83.8	54.9	56.3			
MT En-Ru B	74.3	52.4	89.9	71.8/81.3	89.4/85.6	82.8/82.8	81.5	83.1	58.5	43.7*			
Reddit ^B	75.6	49.5	91.7	84.6/89.2	89.4/85.8	83.8/83.6	81.8	84.4	58.1	56.3			
SkipThought B	75.2	53.9	90.8	78.7/85.2	89.7/86.3	81.2/81.5	82.2	84.6	57.4	43.7*			
MTL GLUE ^B	79.6	56.8	91.3	88.0/91.4	90.3/86.9	89.2/89.0	83.0	86.8	74.7	43.7*			
MTL Non-GLUE ^{B}	76.7	54.8	91.1	83.6/88.7	89.2/85.6	83.2/83.2	82.4	84.4	64.3	43.7*			
MTL All ^B	<u>79.3</u>	53.1	91.7	88.0/91.3	90.4/87.0	88.1/87.9	83.5	87.6	75.1	45.1*			
				Test Set	t Results								
Non-GLUE ^E	69.7	34.5	89.5	78.2/84.8	83.6/64.3	77.5/76.0	75.4	74.8	55.6	65.1			
MNLI ^B	77.1	49.6	93.2	88.5/84.7	70.6/88.3	86.0/85.5	82.7	78.7	72.6	65.1			
\mathbf{GLUE}^B	77.3	49.0	93.5	89.0/85.3	70.6/88.6	85.8/84.9	82.9	81.0	71.7	34.9			
	70.4	50.1	00.5	00.0/04.0	71 0/00 0	07 1/05 0	04.0	01.1	(65.1			

Avg CoLA SST

70.5

71.2

ELMo

38.5 87.7

39.4 **90.6**

39.4 87.3

Intermediate Task

 \mathbf{Random}^E

 $CoLA^E$

Single-Task^E

Wang, Hula, Xia, Pappagari, McCoy, Patel, Kim, Tenney, Huang, Yu, Jin, Chen, Van Durme, Grave, Pavlick and Bowman '19

BERT Base STILTS

- Most intermediate tasks *harm* performance, especially with BERT.
 - This includes most of the GLUE tasks, MT, Reddit prediction, DisSent, and several more!
- BERT with MNLI or BERT with GLUE (multi-task) work best, and show consistent improvements.

Practical Conclusions

- If you're building a language understanding model now, you have at least a few thousand training examples, and you need the best performance you can get:
 - Use **RoBERTa**. \bullet
 - If you're aware of a big dataset for some related task, or if you're working with very limited training data, use **STILTs**, too!
- **Don't be too quick to trust** any one analysis study that claims to tell you what NLP models know.
- Keep an eye on **super.gluebenchmark.com** for future developments in this area.
- For a toolkit that implements everything I've spoken about, try **jiant.info**.

Open Questions

Plenty of open questions!

- How far can we push plain unsupervised pretraining with bigger models?
- What makes a task suitable for use as as intermediate task in STILTs?
- Are we nearing the end of the line for evaluation with IID test sets?
- How can we mitigate the social biases that these models learn during pretraining and fine-tuning?

Thanks!

Questions: <u>bowman@nyu.edu</u>

Seepinyourhat

Try SuperGLUE: super.gluebenchmark.com

Sponsors

SAMSUNG Research

See cited papers for full project details.

69

But wait! There's more!

Rank	Name	Model	L	URL	Score	CoL	A SST-2	MRPC	STS-B	QQP	MNLI-m MN	Ll-mm	QNLI	RTE	WNL
1	ALBERT-Team Google Languag	eALBERT (Ensemble)			89.4	69.	1 97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3	91.0	99.2	89.2	91.8
2	Microsoft D365 AI & UMD	Adv-RoBERTa (ensemble)			88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1	90.7	98.8	88.7	89.0
3	Facebook Al	RoBERTa	(88.5	67.8	8 96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	98.9	88.2	89.0
4	XLNet Team	XLNet-Large (ensemble)	(88.4	67.8	8 96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2	89.8	98.6	86.3	90.4
5	Microsoft D365 AI & MSR AI	MT-DNN-ensemble	(87.6	68.4	4 96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0
6	GLUE Human Baselines	GLUE Human Baselines	(87.1	66.4	4 97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9
Rank	Name	Model	URL	Sco	re Bo	olQ	СВ	COPA	MultiRC	ReCoRI	D RTE	WiC	WSC	AX	b
1	SuperGLUE Human Baseline	esSuperGLUE Human Baselines		89).8 8	89.0 9	95.8/98.9	100.0	81.8/51.9	91.7/91.3	3 93.6	80.0	100.0	76	.6 99
2	Facebook Al	RoBERTa		84	l.6 8	87.1 9	90.5/95.2	90.6	84.4/52.5	90.6/90.	0 88.2	69.9	89.0	57	.9 91
3	SuperGLUE Baselines	BERT++		71	.5 7	79.0 8	84.8/90.4	73.8	70.0/24.1	72.0/71.	3 79.0	69.6	64.4	38	.0 99
		BERT		69	9.0	77.4 7	75.7/83.6	70.6	70.0/24.1	72.0/71.	3 71.7	69.6	64.4	23	.0 97

