Evaluating Recent Progress Toward General-Purpose Language Understanding Models

The Goal

To develop a **general-purpose neural network encoder for text** which makes it possible to solve any new **language understanding task** using only enough training data to **define the possible outputs**.

The Goal

To develop a neural network model that already understands English when it starts learning a new task.

The Technique: Muppets

Large-scale pretrained language models like **ELMo**, GPT, **BERT**, XLNet, **RoBERTa**, and T5 have offered a recent surge of progress toward this goal.

This Talk

- The GLUE language understanding benchmark Wang et al. '19a
- Recent progress and the updated SuperGLUE benchmark
 Nangia & Bowman '19, Wang et al. '19b
- A few things we've learned about modern models Tenney et al. '19, Warstadt et al. '19
- What's next for evaluation?
 Idle speculation '19

GLUE: What is it?

GLUE

The General Language Understanding Evaluation (GLUE):

An open-ended competition and evaluation platform for general-purpose sentence encoders.

Why GLUE?

Increasingly common for researchers outside NLP to evaluate new techniques on language understanding tasks.

- We can learn a lot this way...
- …if these researchers evaluate on significant open problems…
- ...which doesn't always happen.

Why GLUE?

GLUE for non-NLP-specialist researchers:

- We provide tasks, metrics, baselines, and code that represent open problems of interest to researchers in NLU.
- We don't enforce any particular experimental design —that's up to the (expert) users.

Nine English-language sentence understanding tasks based on existing data:

- Unsolved
- Varied training data volume
- Varied language style/genre

Simple task APIs:

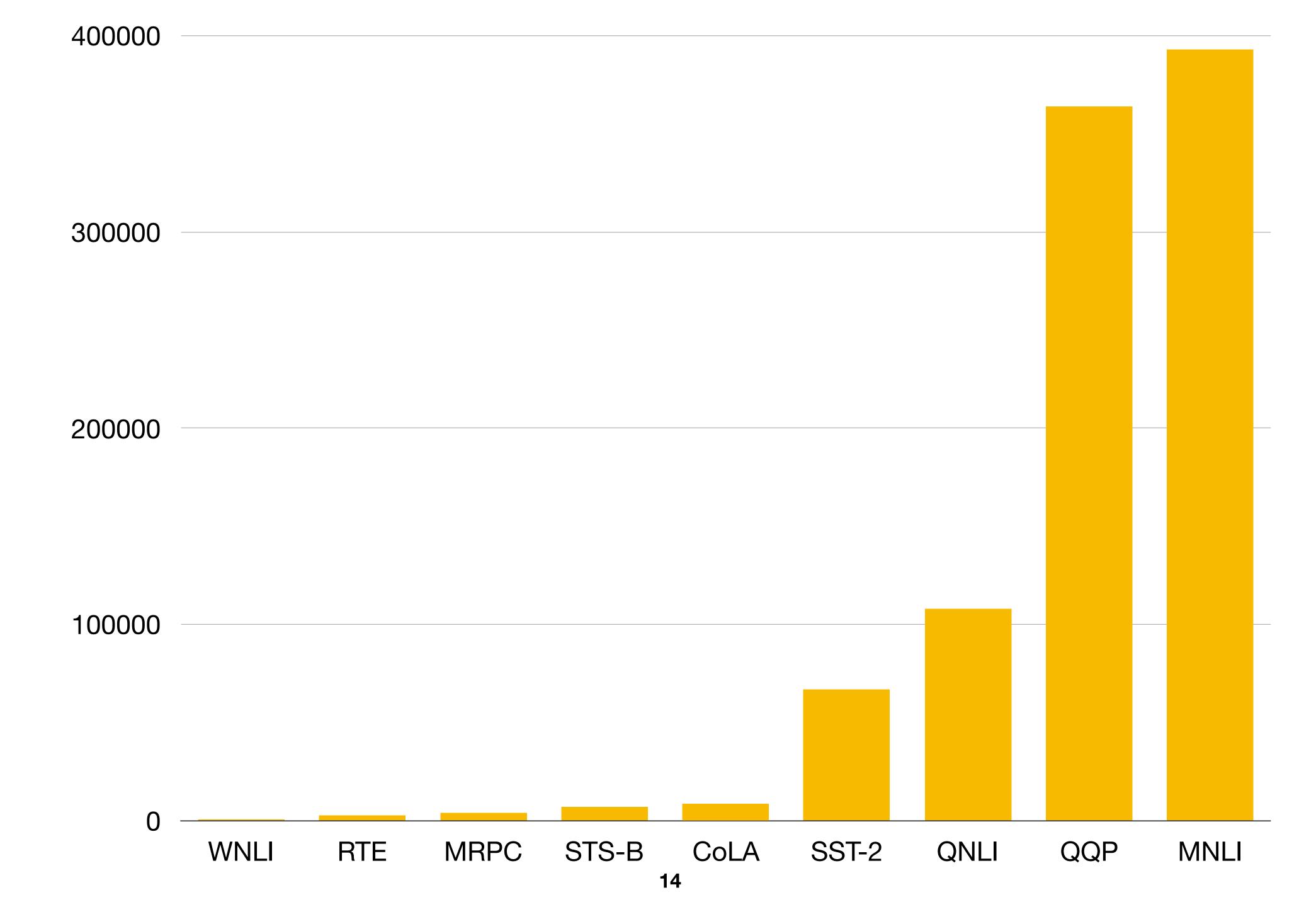
- Only sentence or sentence pair inputs.
- Only classification or regression outputs.
- No generation or structured prediction.

Simple leaderboard API: Upload predictions for a test set (like Kaggle/SemEval)

- Usable with any software infrastructure.
- Usable with any kind of method/model!
- Allows us to limit use of the test sets.

Corpus	Train	Dev	Test	Task	Metrics	Domain		
Single-Sentence Tasks								
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews		
	Similarity and Paraphrase Tasks							
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions		
	Inference Tasks							
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. misc. fiction books		

Corpus	Train	Dev	Test	Task	Metrics	Domain				
			Single-Sentence Tasks							
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews				
			Similarity and Paraphrase Tasks							
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions				
			Inference Tasks							
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. misc. fiction books				



Corpus	Train	Dev	Test	Task	Metrics	Domain				
			Single-Sentence Tasks							
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews				
			Similarity and Paraphrase Tasks							
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions				
			Inference Tasks							
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. misc. fiction books				

Corpus	Train	Dev	Test	Task	Metrics	Domain	
				Single-Senter	Single-Sentence Tasks		
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews	
				Similarity and Par			
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions	
				Inference	Inference Tasks		
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. misc. fiction books	

Corpus	Train	Dev	Test	Task	Metrics	Domain
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews
Similarity and Paraphrase Tasks						
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions
	Inference Tasks					
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. fiction books

The Corpus of Linguistic Acceptability (CoLA)

Warstadt et al. '18

- Binary classification: Is some string of words a possible English sentence.
- Data of this form is a major source of evidence in linguistic theory. Sentences
 derived from books and articles on morphology, syntax, and semantics.
 - * Who do you think that will question Seamus first?
 - ✓ The gardener planted roses in the garden.

Corpus	Train	$ \mathbf{Dev} $	Test	Task	Metrics	Domain	
Single-Sentence Tasks							
CoLA	8.5k	1k	1k	acceptability	Matthews corr.	misc.	
SST-2	67k	872	1.8k	sentiment	acc.	movie reviews	

The Recognizing Textual Entailment Challenge

Dagan et al. '06 et seq.

Corpus	Train	Dev	Test	Task	Metrics	Domain			
Single-Sentence Tasks									
CoLA SST-2									
MRPC STS-B QQP	STS-B Hypothesis: Christopher Reeve had an accident.								
				Intere	nce rasks				
MNLI	393k	20k	20k	NLI	matched acc./mismatche	ed acc. misc.			
QNLI	108k	5.7k	5.7k	QA/NLI	acc.	Wikipedia			
RTE	2.5k	276	3k	NLI	acc.	misc.			
WNLI	634	71	146	coreference/NL	I acc.	fiction books			

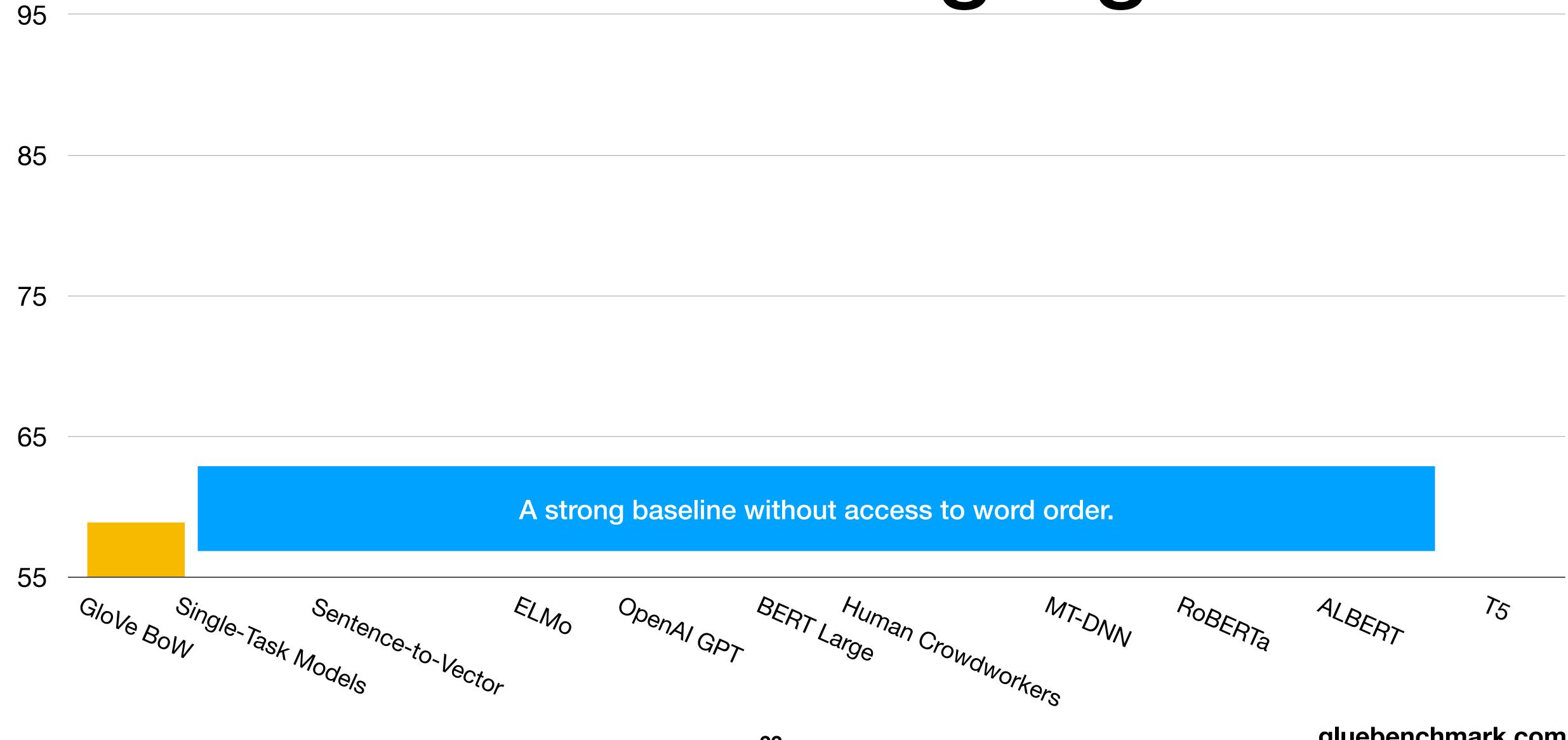
The Winograd Schema Challenge

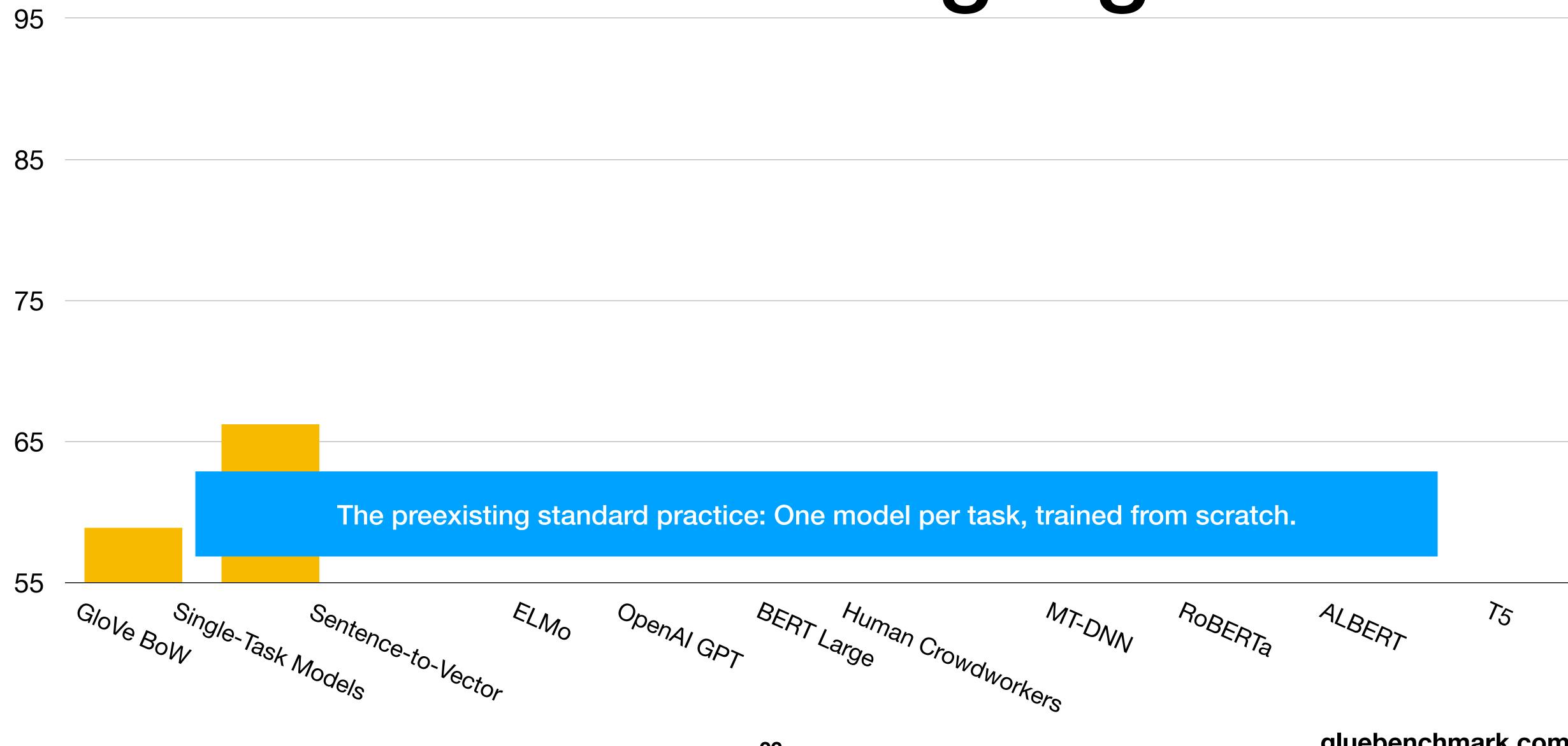
NLI format, based on Levesque et al., 2011

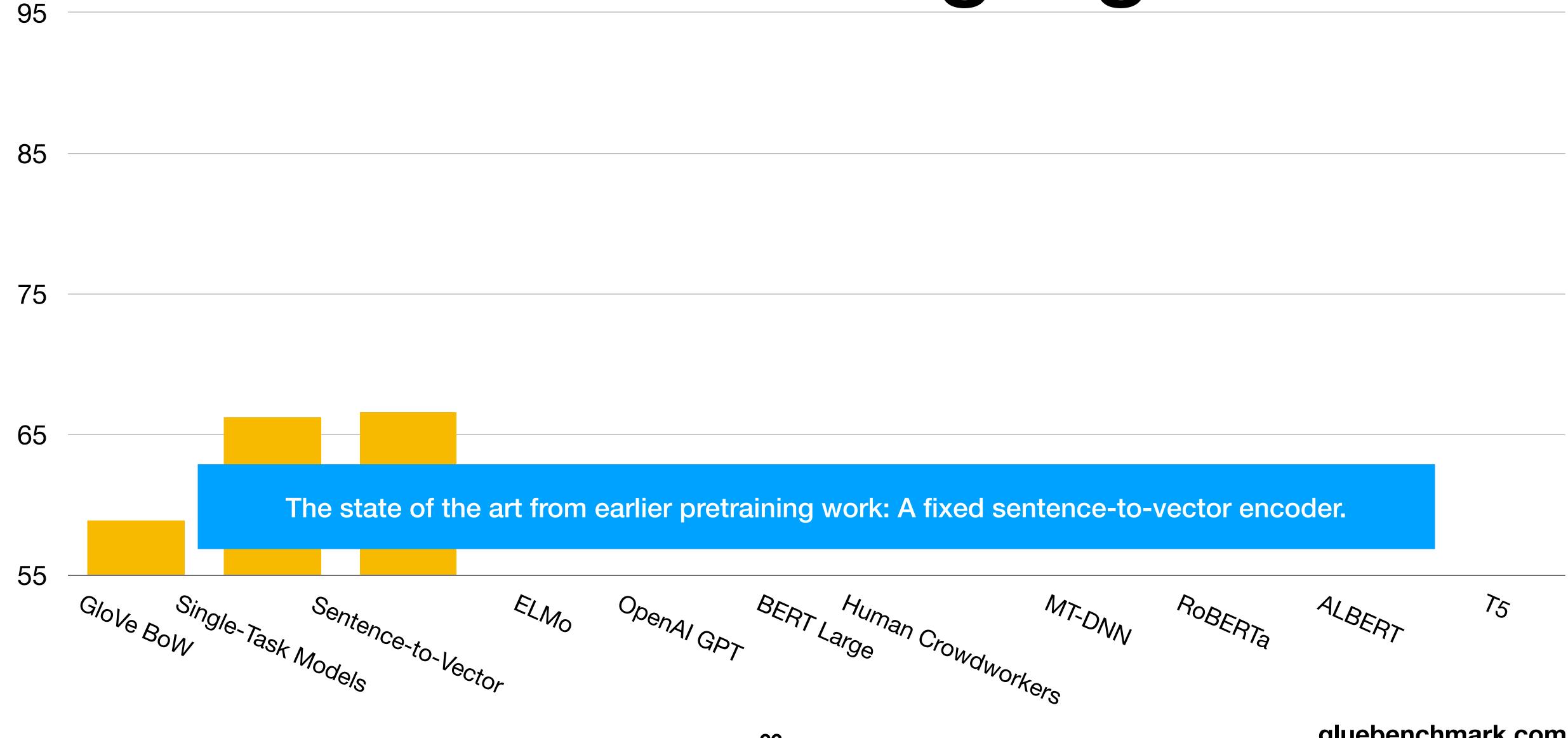
Corpus	Train	Dev	Test	Task	Metrics	Domain				
CoLA SST-2										
MRPC STS-B QQP	P: Jane gave Joan candy because she was hungry. H: Joan was hungry. entailment									
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched accacc.	. misc. Wikipedia misc. fiction books				

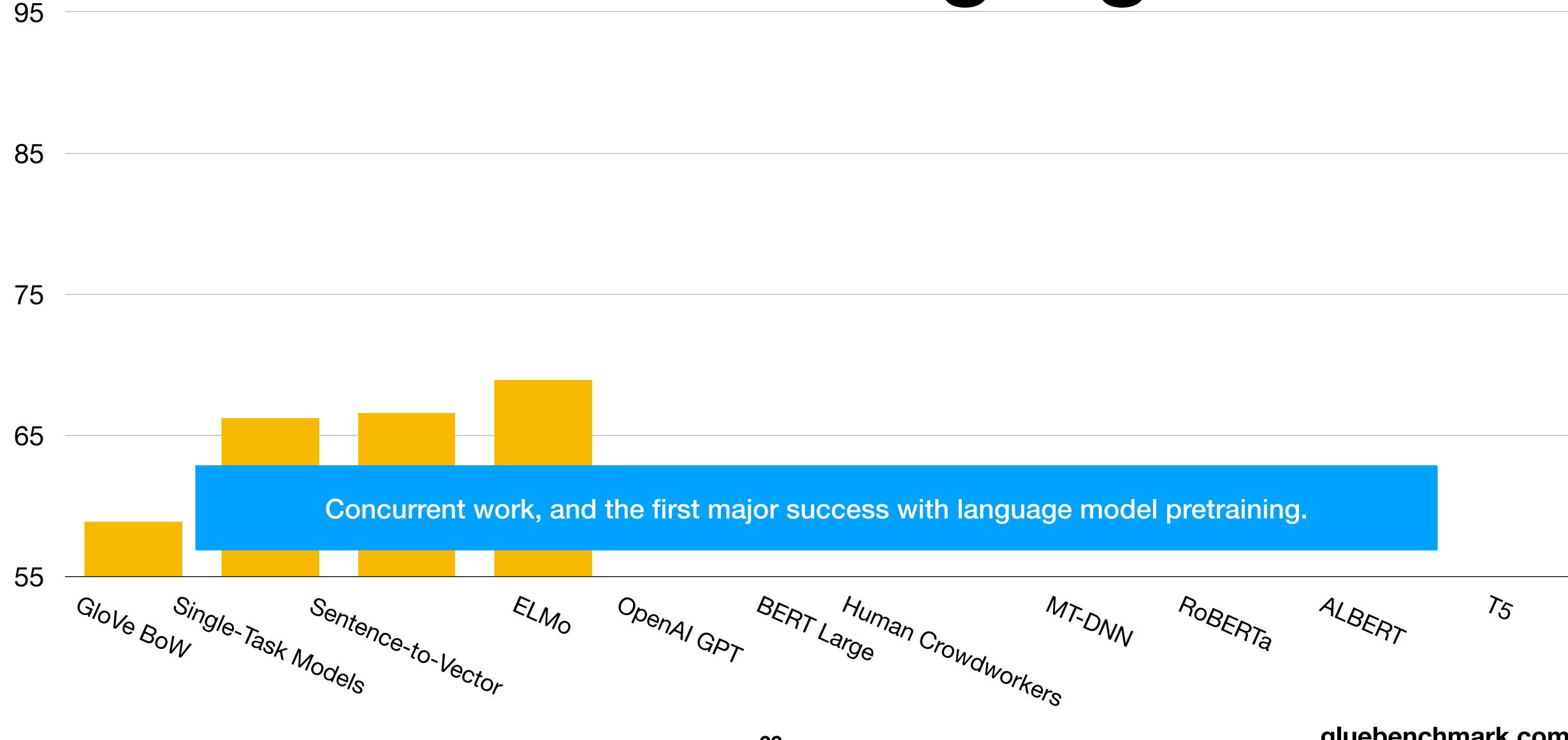
GLUE: What methods work?

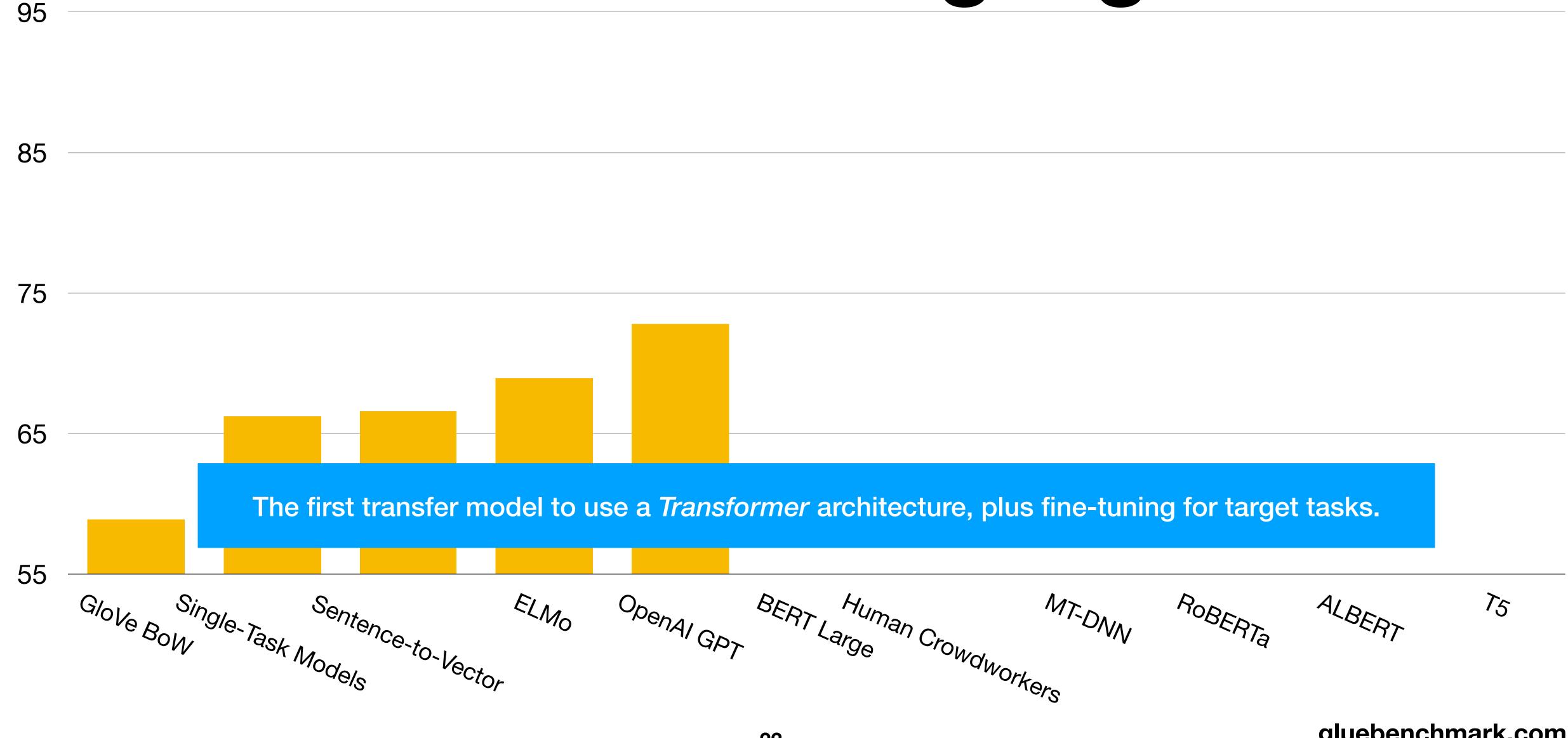
95 85 65 Glove Bow Single-Task Models BERT Large Crowdworkers Sentence-to-Vector ELMo OpenAIGPT MT-DNN ALBERT ROBERTa

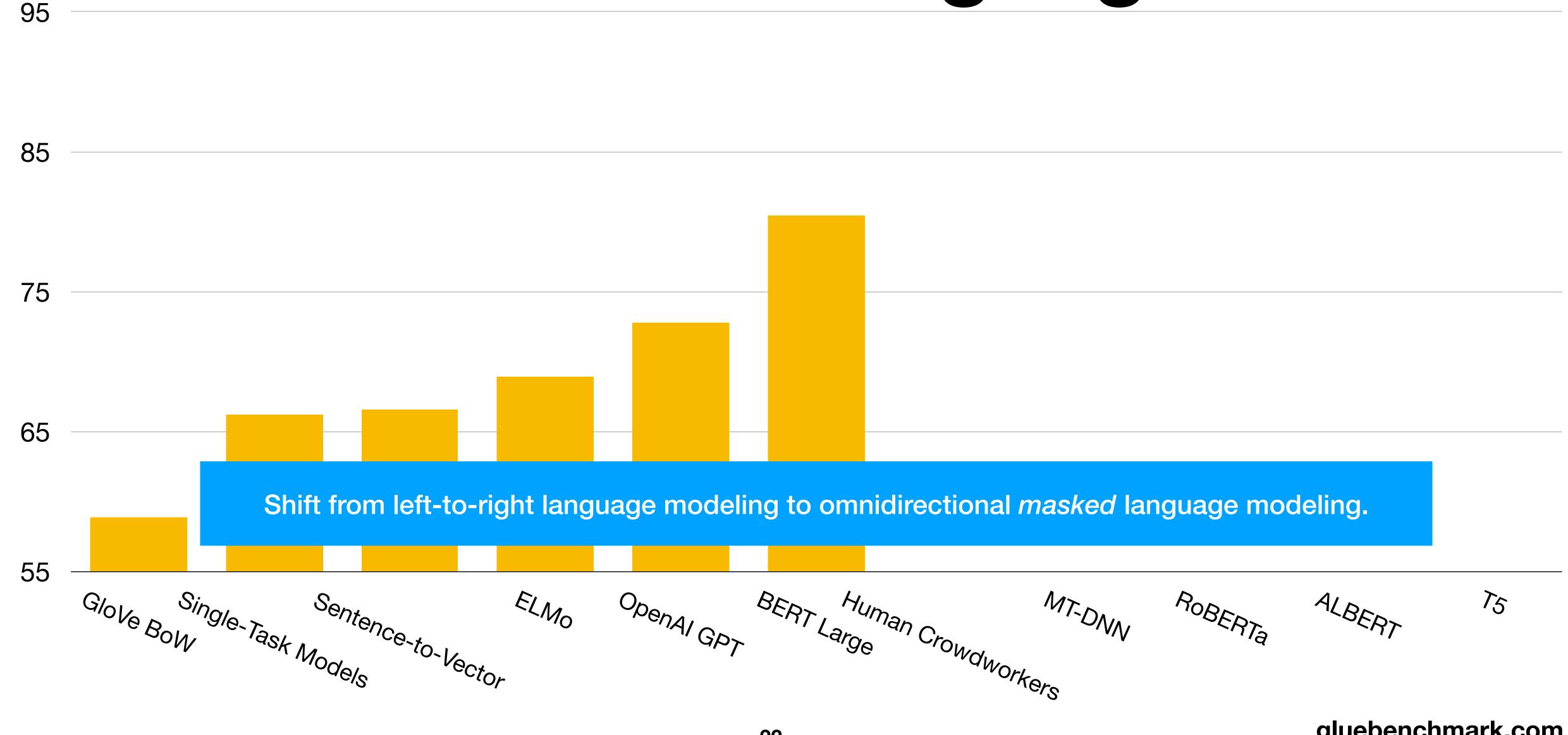








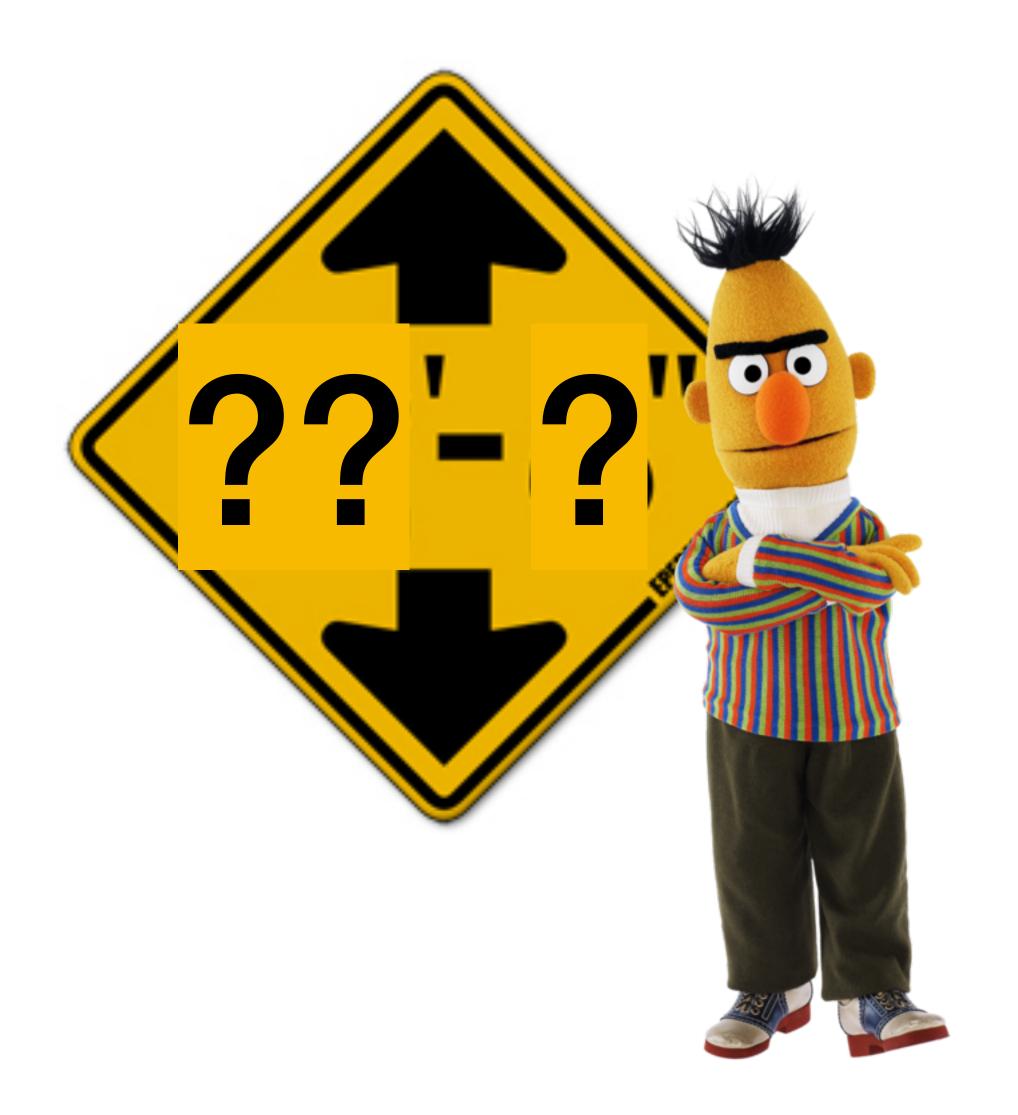




Human Performance Estimate

How much headroom does GLUE have left?

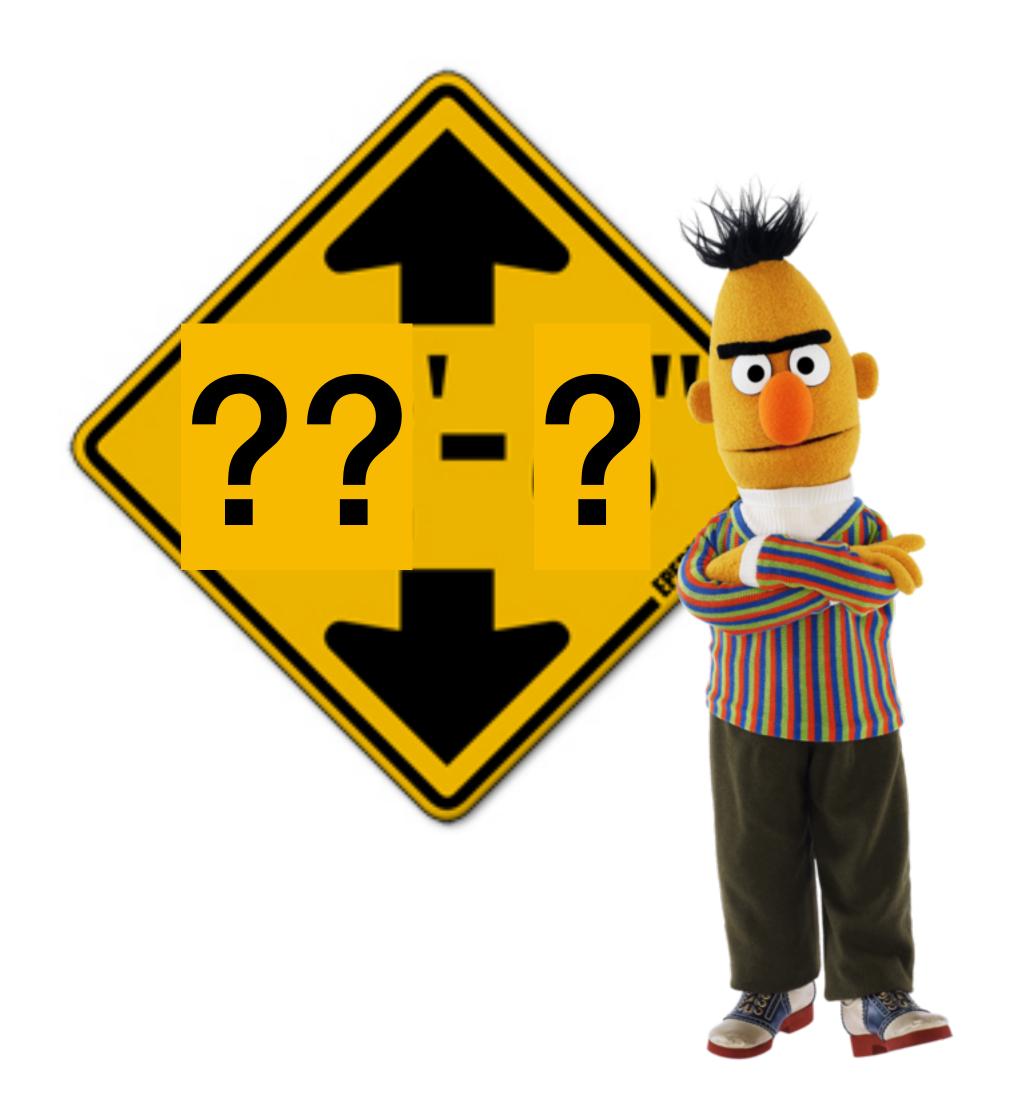
- To compute a conservative estimate for each task:
 - Train crowdworkers.

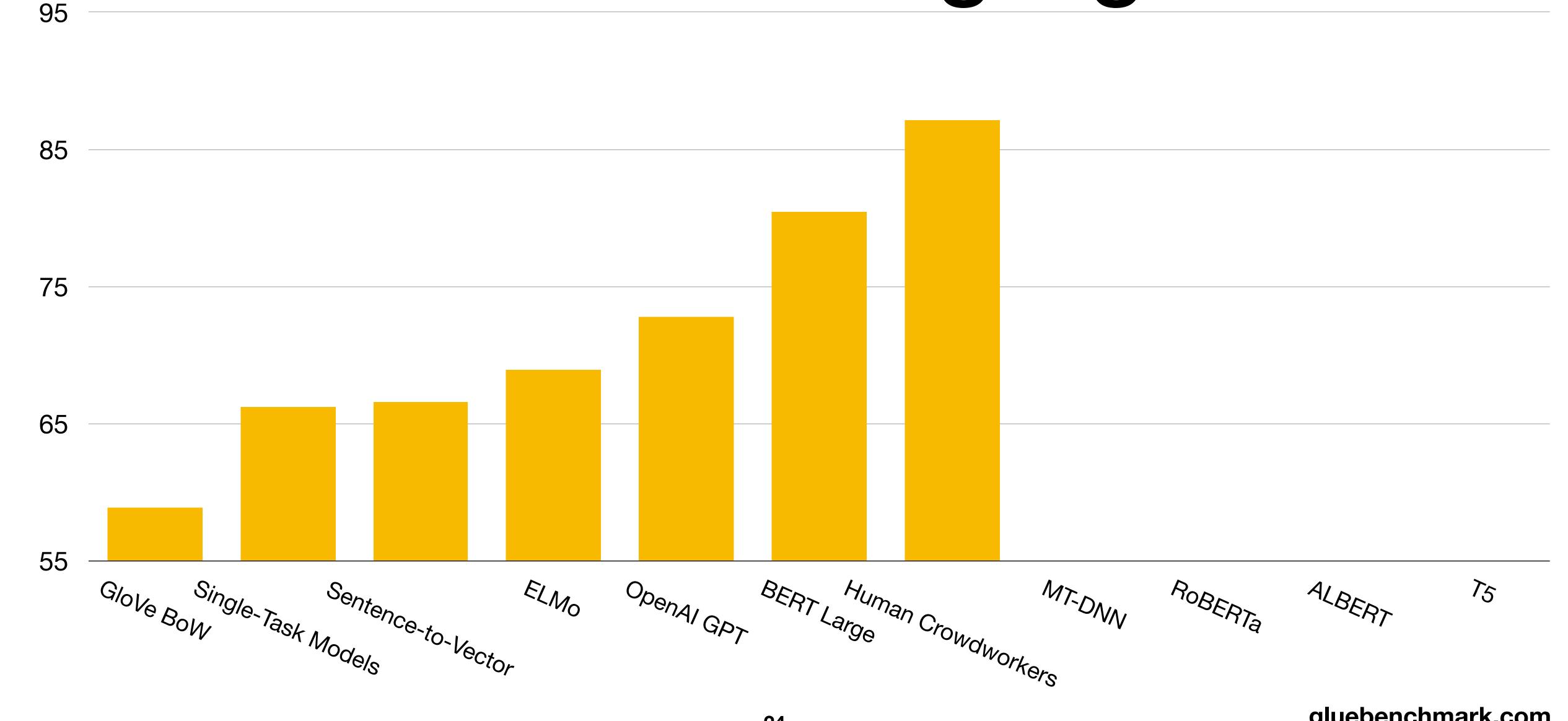


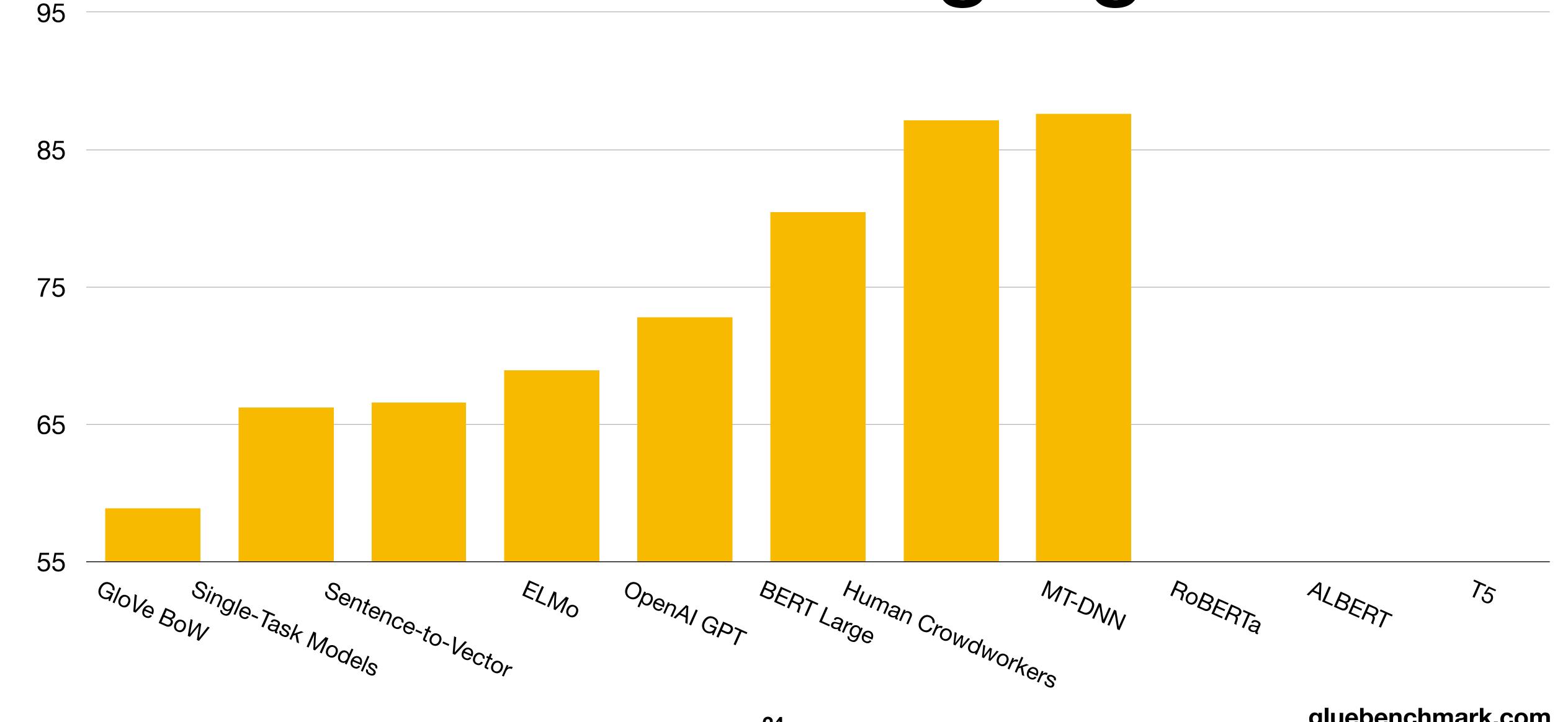
Human Performance Estimate

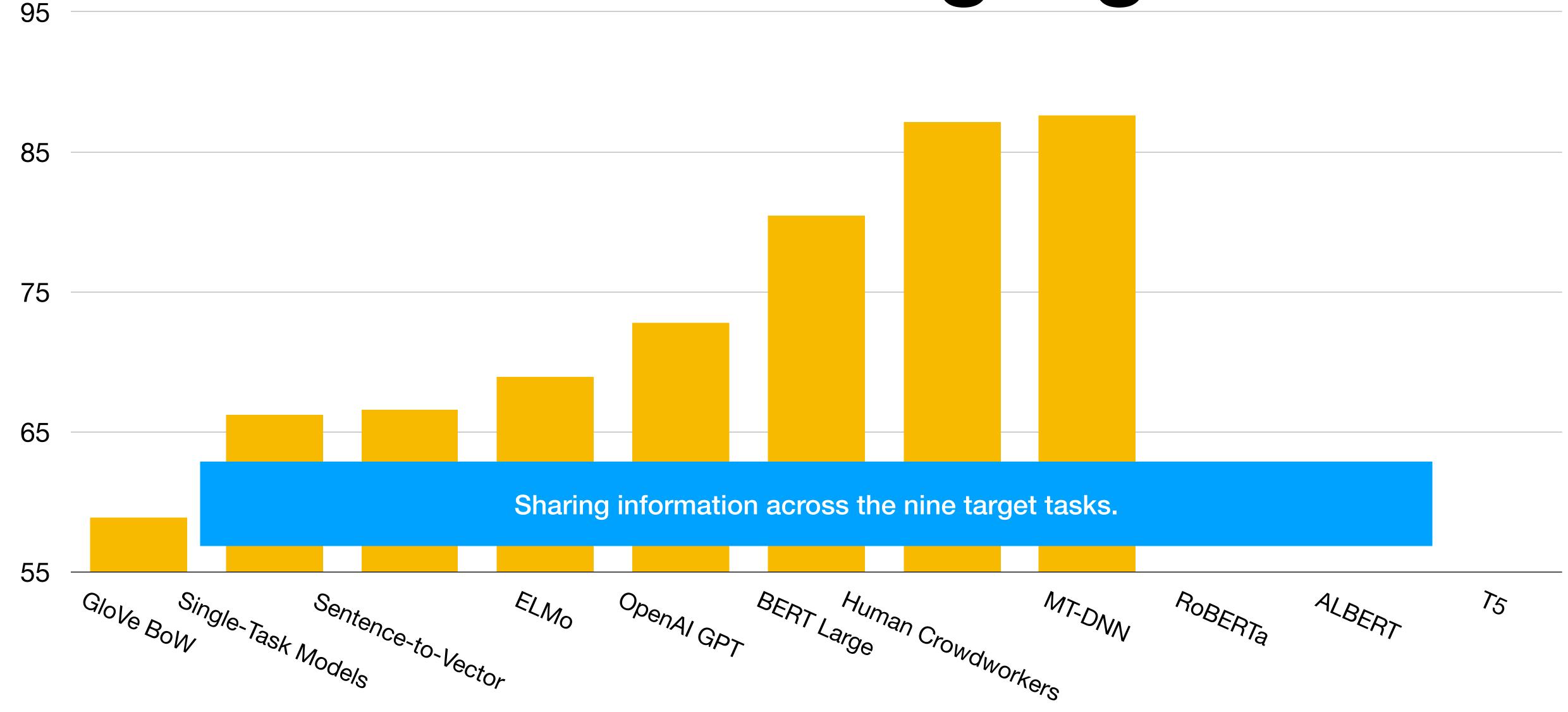
How much headroom does GLUE have left?

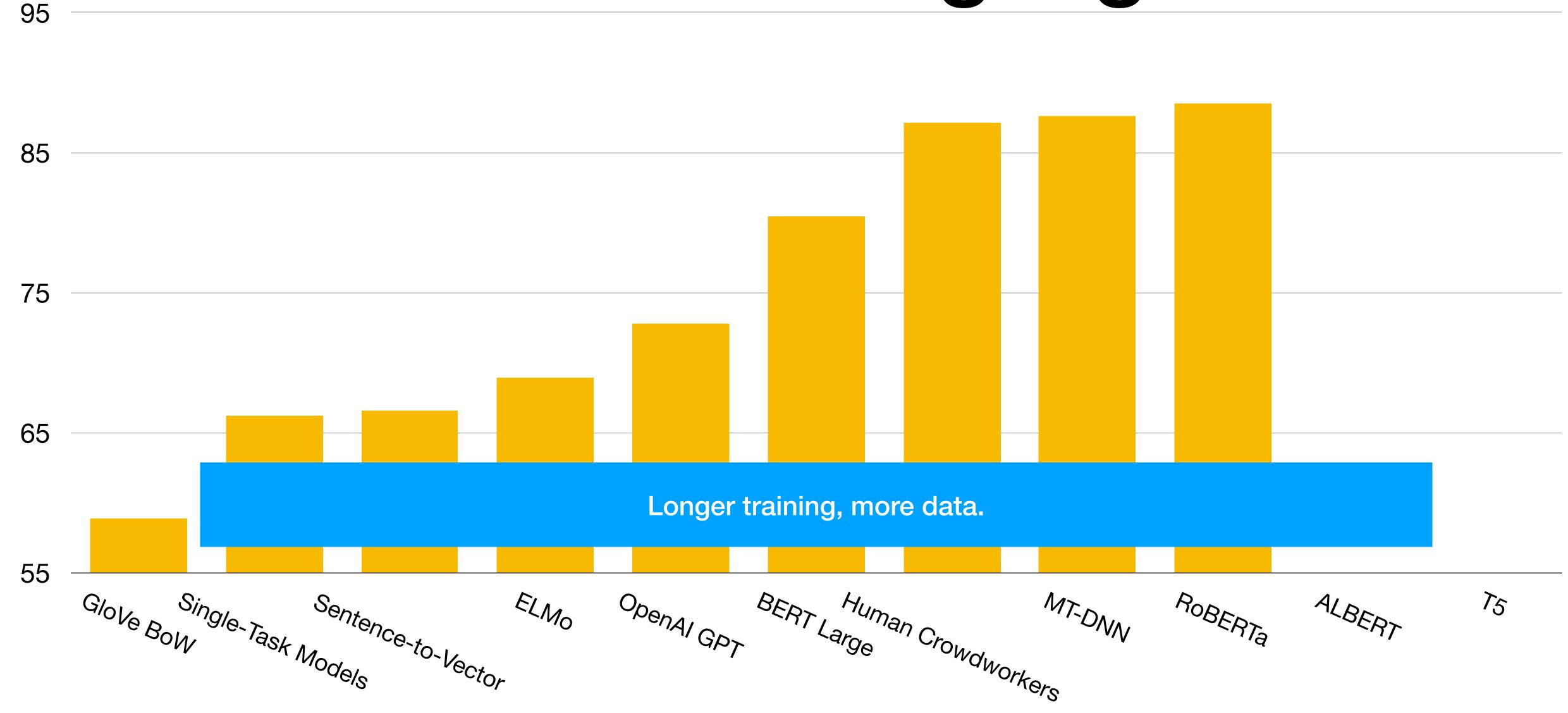
- To compute a conservative estimate for each task:
 - Train crowdworkers.
 - Get multiple crowdworker labels for each example, take a majority vote.



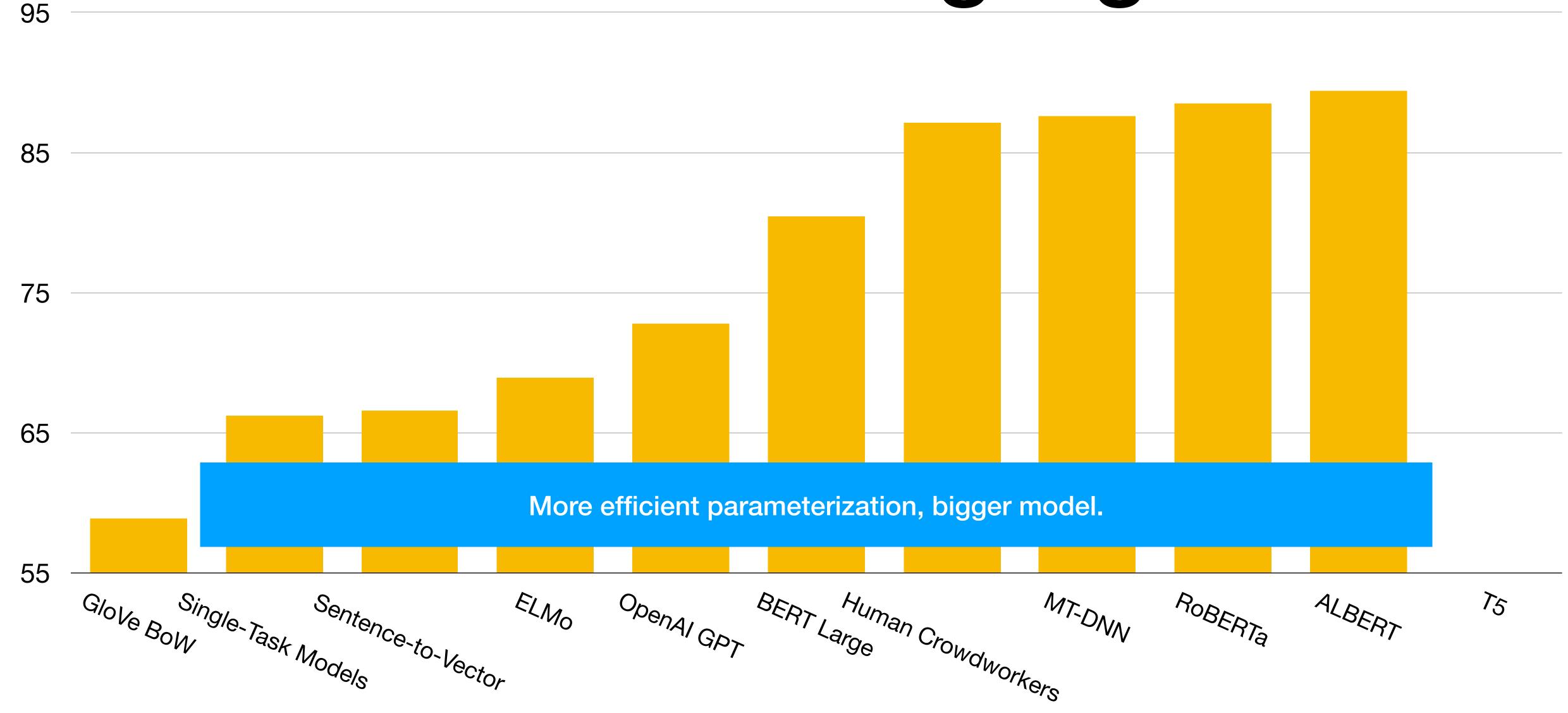




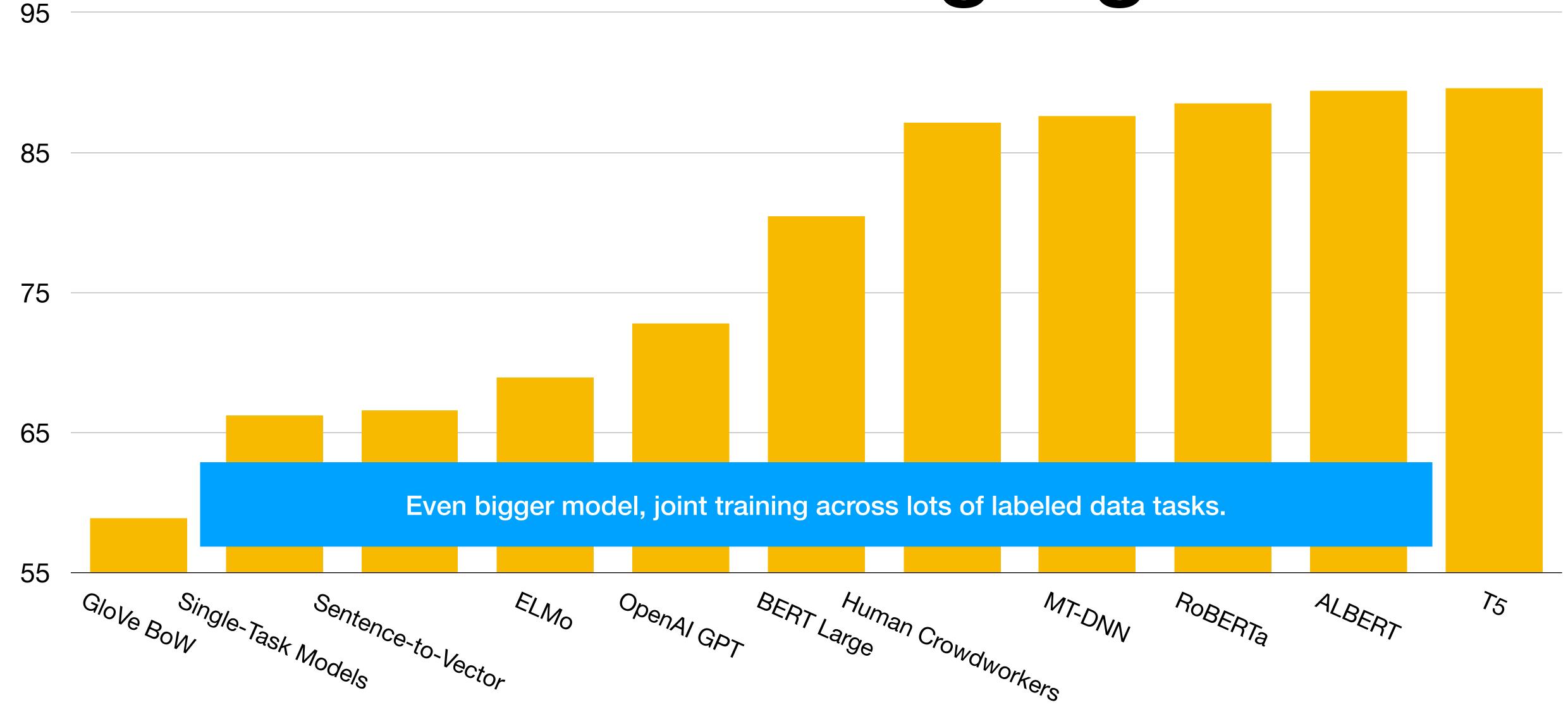




GLUE Score: Highlights



GLUE Score: Highlights



We rebuilt GLUE from scratch...

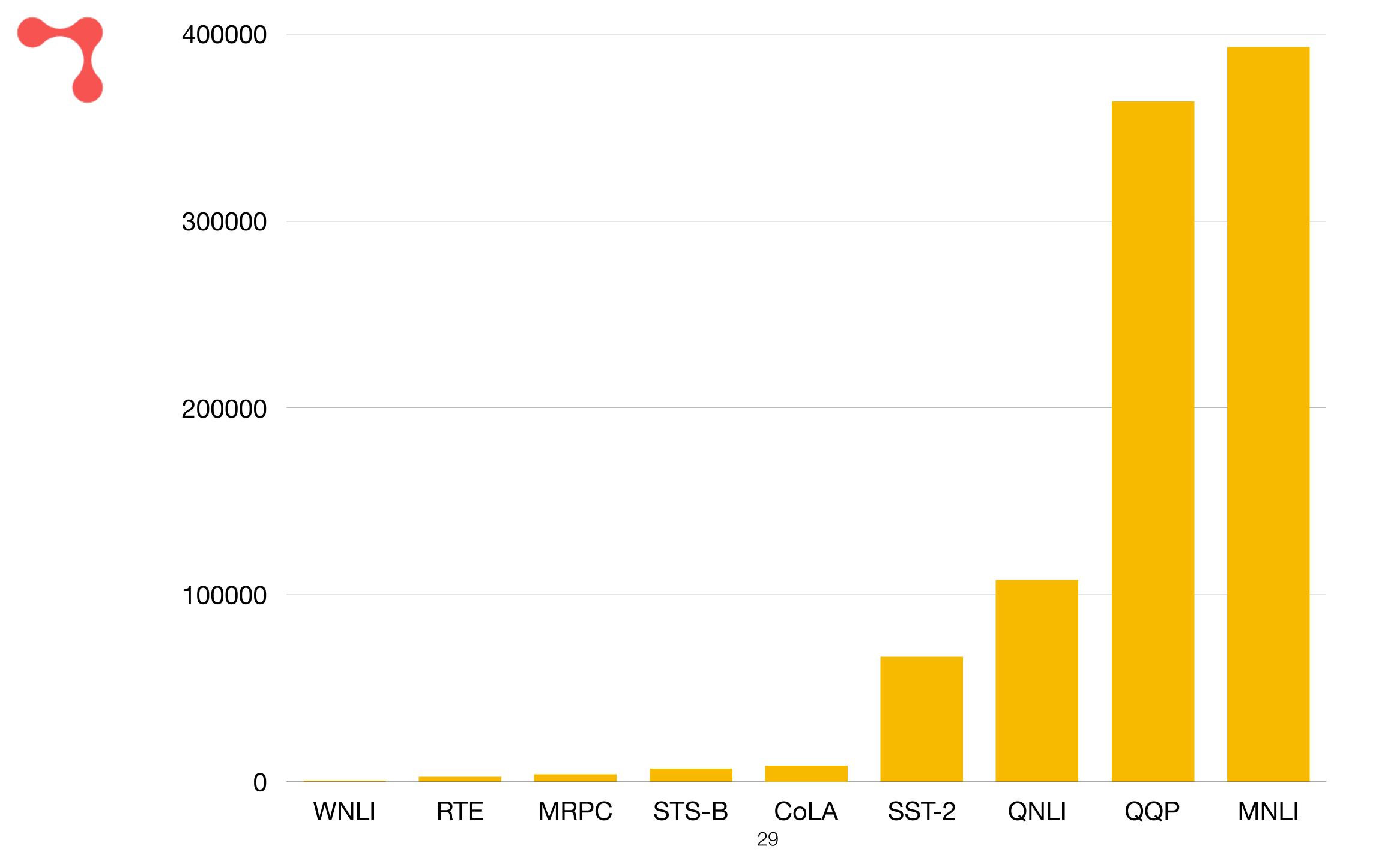
- ...starting with an open call for dataset proposals
- ...yielding 30–40 candidates
- ...which we filtered using human evaluation and BERTbase baselines
- ...and a final set of eight tasks
- ...following a slightly expanded set of task APIs.

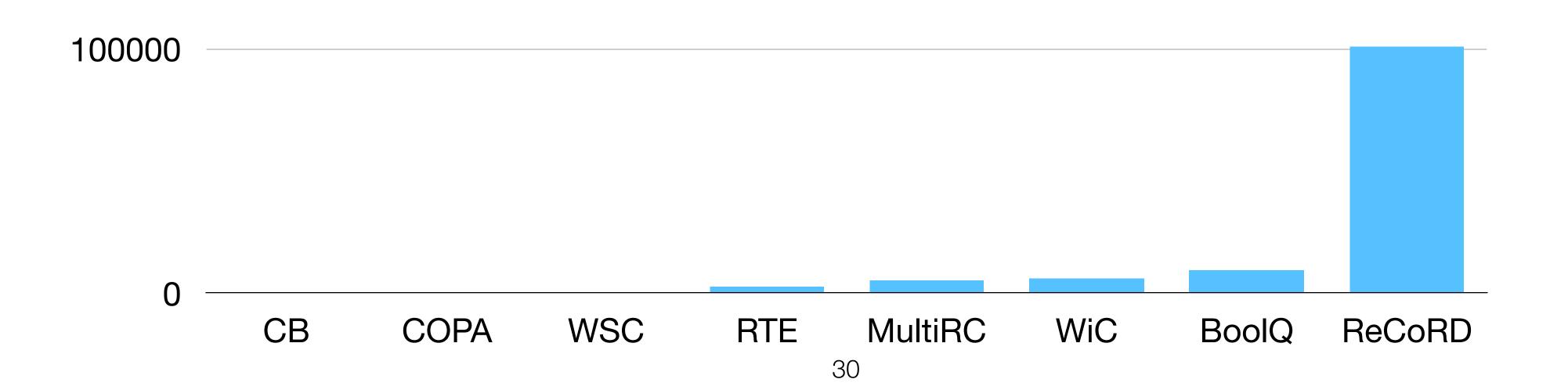
SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
\mathbf{CB}	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books





SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

The Commitment Bank

de Marneffe et al. '19

 Three-way NLI classification: Does a speaker utterance entail some embedded clause within that utterance?

Text:

B: And yet, uh, I we-, I hope to see employer based, you know, helping out. You know, child, uh, care centers at the place of employment and things like that, that will help out.

A: Uh-huh.

B: What do you think, do you think we are, setting a trend?

Hypothesis:

they are setting a trend

no-entailment

νουίζ	ノマムノ	3410	JZTJ	VΛ	acc.	Ovogie queries, minipeula
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blace photography angualanadia
MultiRC	5100	953	1800	QA	$F1_a/EM$	Vang, Pruksachatkun, Nangia, Singl
ReCoRD	101k	10k	10k	OA^{32}	F1/EM	Michael, Hill, Levy & Bowman NeurIPS ¹¹

MultiRC

Khashabi et al. '18

Multiple choice reading comprehension QA over paragraphs.

Paragraph: Susan wanted to have a birthday party. She called all of her friends. She has five friends. Her mom said that Susan can invite them all to the party. Her first friend could not go to the party because she was sick. Her second friend was going out of town. Her third friend was not so sure if her parents would let her. The fourth friend said maybe. The fifth friend could go to the party for sure. Susan was a little sad. On the day of the party, all five friends showed up. Each friend had a present for Susan. Susan was happy and sent each friend a thank you card the next week.

Question: Did Susan's sick friend recover?

Answers: Yes, she recovered (T), No (F), Yes (T), No, she didn't recover (F), Yes, she was at Susan's

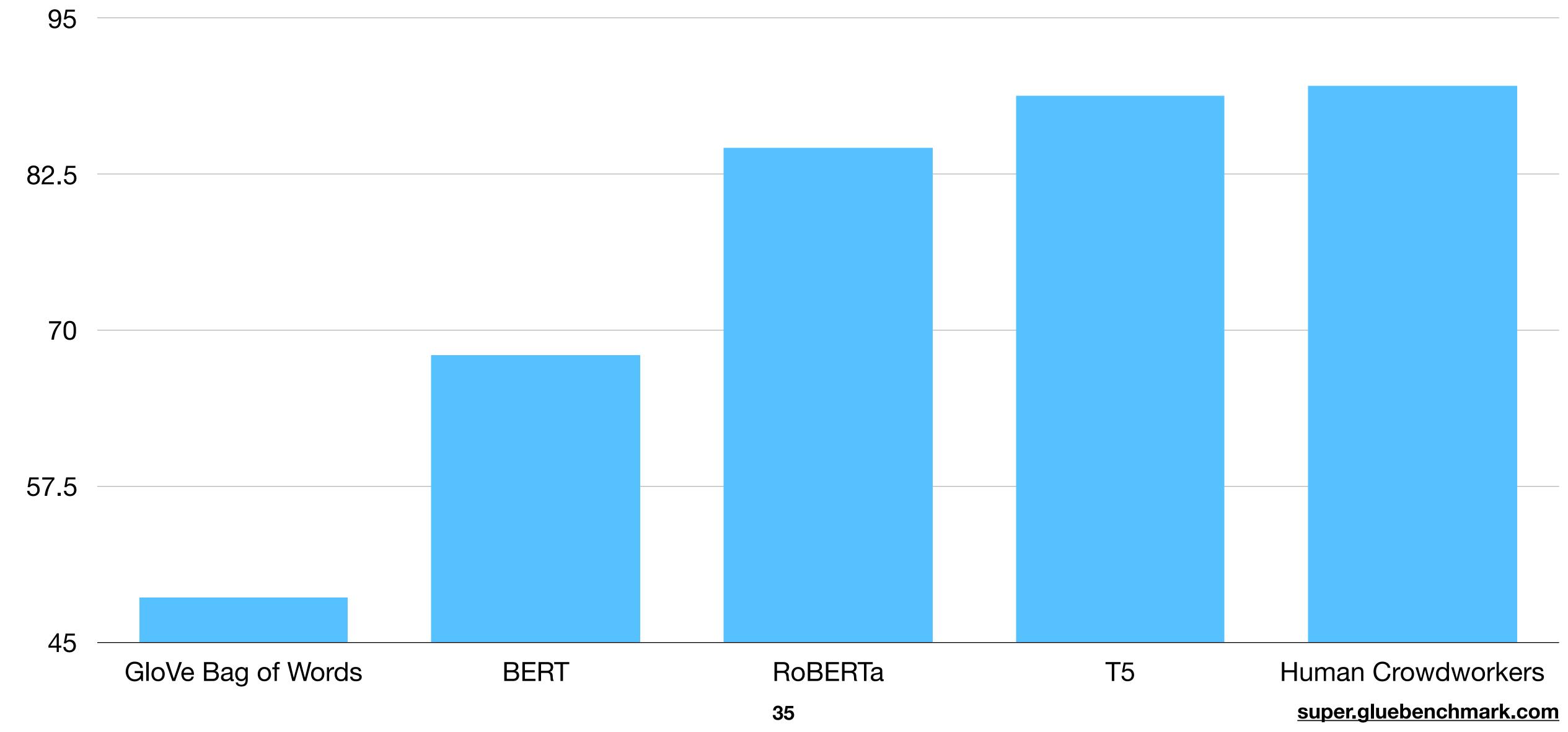
party (T)

COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	V2
ReCoRD	101k	10k	10k	QA NIL I 33	F1/EM	{Wang, Pruksachatkun, Nangia, Singh}, ne Michael, Hill, Levy & Bowman NeurIPS '19

SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

SuperGLUE Score: Highlights



GLUE and SuperGLUE are built only on English data.

 General-purpose pretraining may look quite different in lower-resource languages!

GLUE and SuperGLUE use lots of naturally occurring or crowdsourced data.

- Therefore safe to presume that these datasets contain evidence of social bias (see Rudinger et al., EthNLP '17).
- All else being equal, models that learn and use these biases will do better on these benchmarks.
- In SuperGLUE's WinoGender Schema evaluation (Rudinger et al. '18), T5
 is 10x more like than humans to be confused by irrelevant gender cues.
- Mitigating these biases is a major open problem.

GLUE and SuperGLUE: Non-Limitations

GLUE and SuperGLUE don't test generation or structured prediction.

 These are hand and important problems, but mostly orthogonal to language understanding.

GLUE and SuperGLUE: Open Issues

10-point gap between humans and T5!

We clearly haven't solved NLU.

SuperGLUE includes a broad-coverage NLI diagnostic:

Prepositional phrases section

I ate pizza with olives.

I ate olives.

entailment

I ate pizza with some friends.

I ate some friends.

<u>neutral</u>

GLUE and SuperGLUE: Open Issues

We can be pretty sure we haven't solved NLU even for IID evaluations.

- 6-point gap between T5 and humans on Winograd Schemas.
- In-domain evaluation for NLI, QA, etc., involves lots of phenomena that we know models aren't great at. Are these differences just drowned in the noise?

Why does BERT* work so well? What does BERT know?

In our work on *Edge Probing* (<u>Tenney et al.</u>), we observe that:

- ELMo and BERT both learn nearly perfect features for POS tagging.
- BERT learns better features than ELMo for parsing.
- ELMo and BERT Base do not learn coreference features, but BERT Large does.

In further edge probing studies (<u>Tenney, Das, and Pavlick</u>):

- Lower layers of BERT express features for 'lower level' tasks.
- Higher layers express more abstract/ semantic knowledge.

Structural probes (Hewitt and Manning):

 The geometry of BERT's activation vectors encode some syntactic structure.

Evaluations on *handbuilt test sets* (Yaghoobzadeh et al.):

• BERT relies on brittle non-syntactic heuristics for tasks like NLI; but BERT Large much less so than BERT Base.

How much can we trust these conclusions?

How much can we trust these conclusions?

- Probing studies (loosely defined) like these are a <u>common tool</u> for trying to understand what models like BERT know.
- There are many ways to design such a study, and each bakes in substantial assumptions.
 - Edge probing assumes that if a model *knows* about coreference, then it should be possible to extract that information with a simple MLP model.
- Do different probing methods give us the same answer?

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman EMNLP '19

Case Study: NPI Licensing

NPI words like any or ever can only occur in the scope of specific linguistic *licensing* environments like negations or conditionals.

- Well-characterized in the linguistics literature.
- Depends on long-distance dependencies and complex structures, rather than local co-occurrence.

Does BERT know where NPIs are licensed?

I see kids who are not [eating any cookies].

*I see any kids who are not [eating cookies].

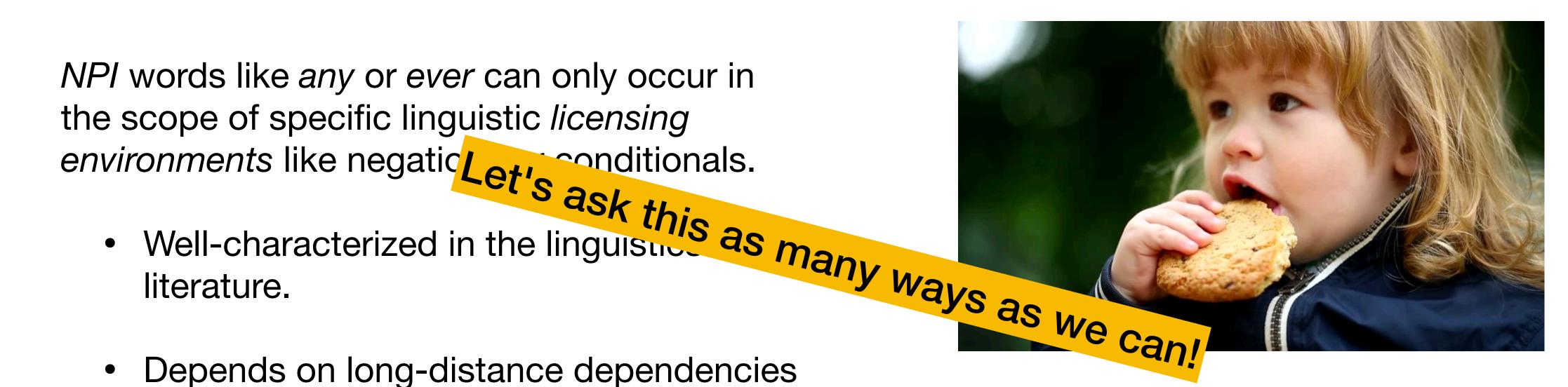
(Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič) & Bowman EMNLP '19

Case Study: NPI Licensing

NPI words like any or ever can only occur in

Depends on long-distance dependencies and complex structures, rather than local co-occurrence.

Does BERT know where NPIs are licensed?



I see kids who are not [eating any cookies].

*I see any kids who are not [eating cookies].

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman **EMNLP '19**

Case Study: NPI Licensing

Evaluation data: Nine custom NPI test sets isolating different NPI licensors:

```
*Those boys say that [the doctors ever went to an art gallery.]
*Those boys ever say that [the doctors went to an art gallery.]
Those boys say that [the doctors often went to an art gallery.]
Those boys often say that [the doctors went to an art gallery.]
```

Let's teach the model to judge acceptability.

Who do you think that will question Seamus first?

*Usually, any lion is majestic.

The gardener planted roses in the garden.

I wrote Blair a letter, but I tore it up before I sent it.

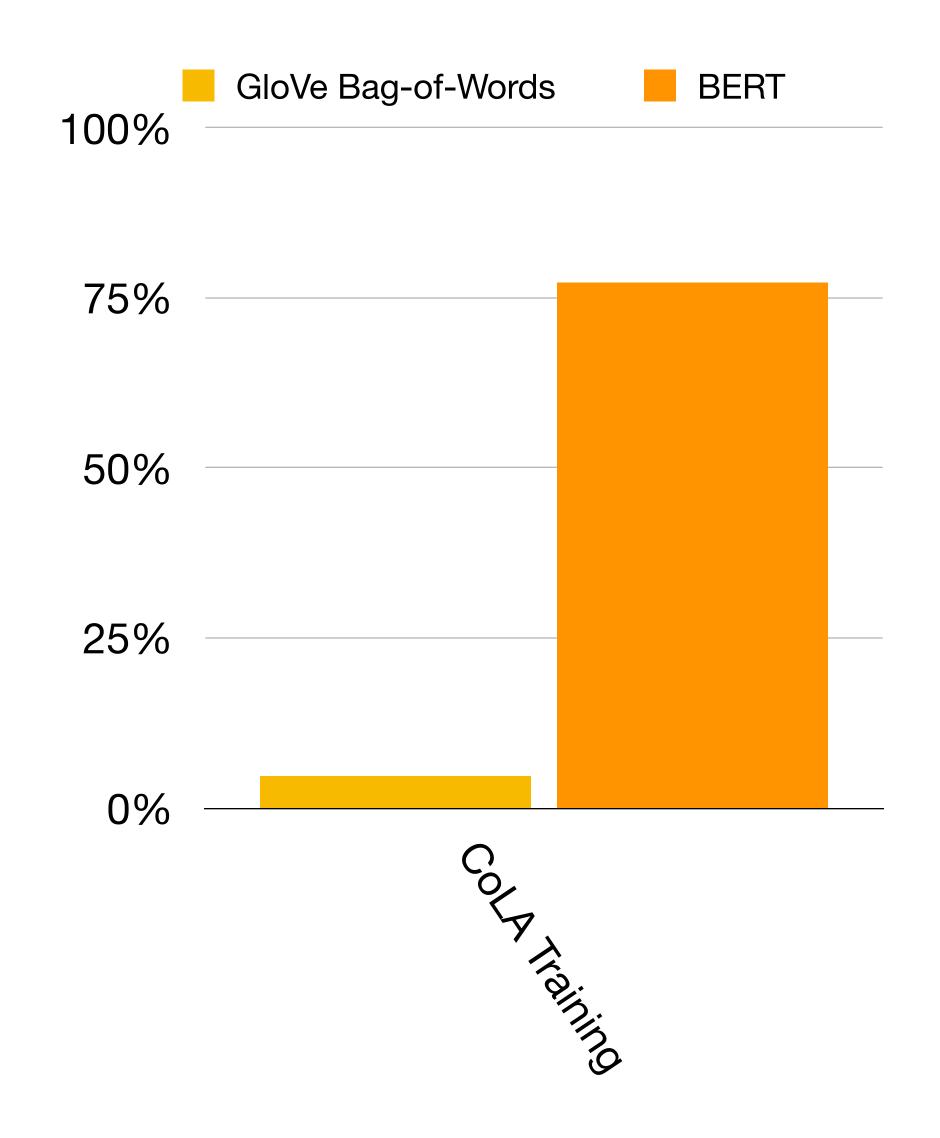
Train:

The CoLA general acceptability corpus

Test:

NPI environment test sets

Metric:



Let's teach the model to judge acceptability.

BERT knows a bit about NPIs, but its not perfect.

Usually, any lion is majesti

The gardener planted re 1 the garden.

I wrote Blair a letter 1 tore it up before I sent it.

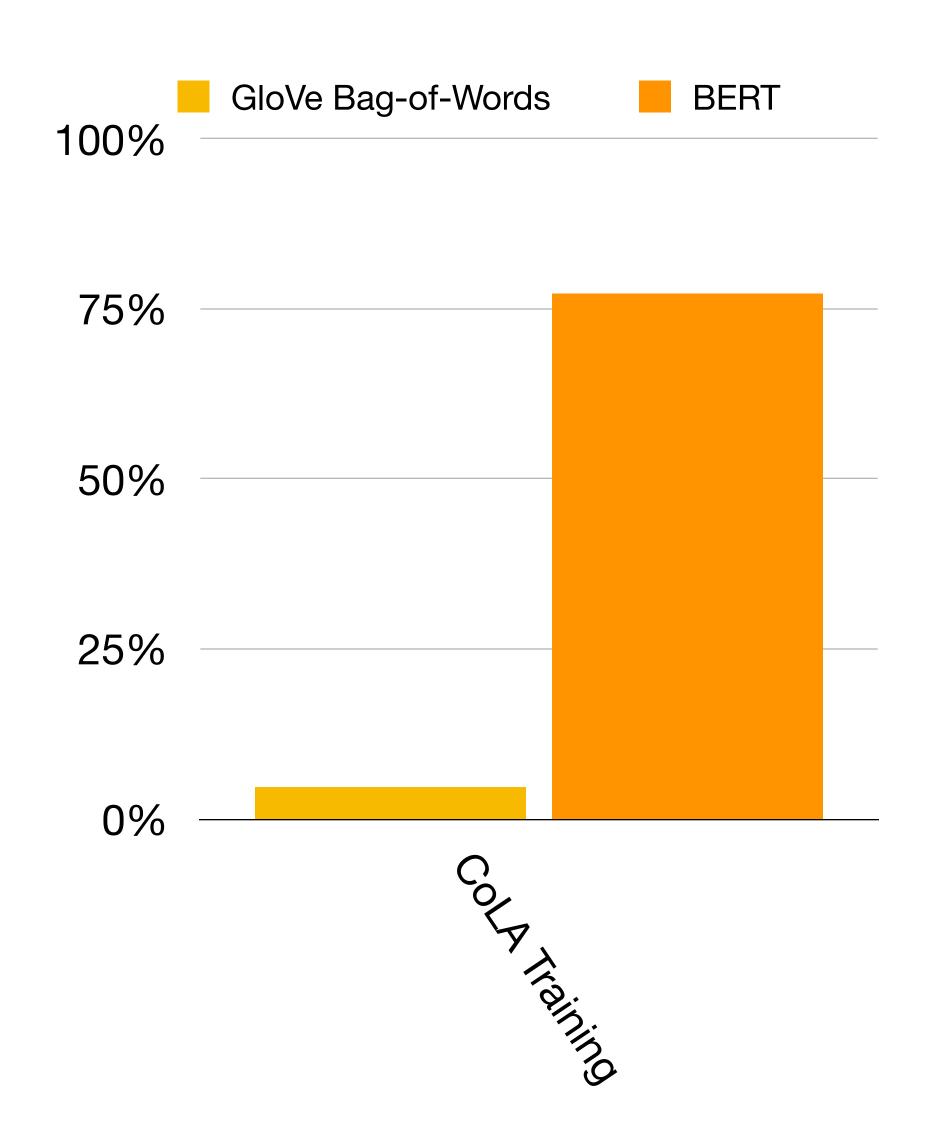
Train:

The CoLA general acceptability corpus

Test:

NPI environment test sets

Metric:



What if we train on NPI data directly?

*Those boys say **that** [the doctors *ever* went to an art gallery.] *Those boys *ever* say **that** [the doctors went to an art gallery.] Those boys say **that** [the doctors *often* went to an art gallery.] Those boys often say that [the doctors went to an art gallery.]

Who do you think that will question Seamus first?

*Usually, any lion is majestic.

The gardener planted roses in the garden.

I wrote Blair a letter, but I tore it up before I sent it.

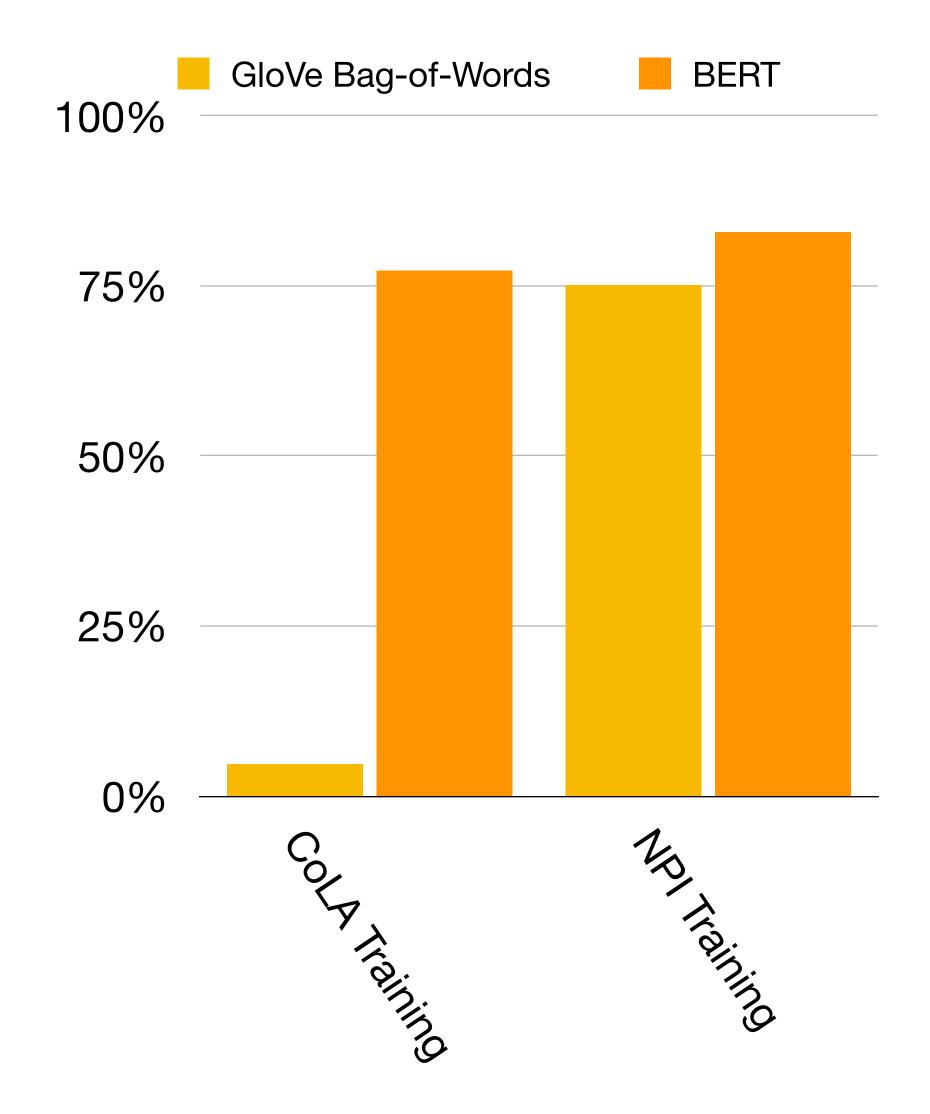
Train:

The CoLA general acceptability corpus or NPI training set (hold-one-out by environment)

Test:

NPI environment test sets

Metric:



What if we train on NPI data directly?

*Those boys say that [the doctors ever went to an art gallery.]

gallery.]

BERT knows something about NPIs, but not all that much.

allery. allery.]

Usually, any lion is majesti

The gardener planted re ₁ the garden.

I wrote Blair a letter 1 tore it up before I sent it.

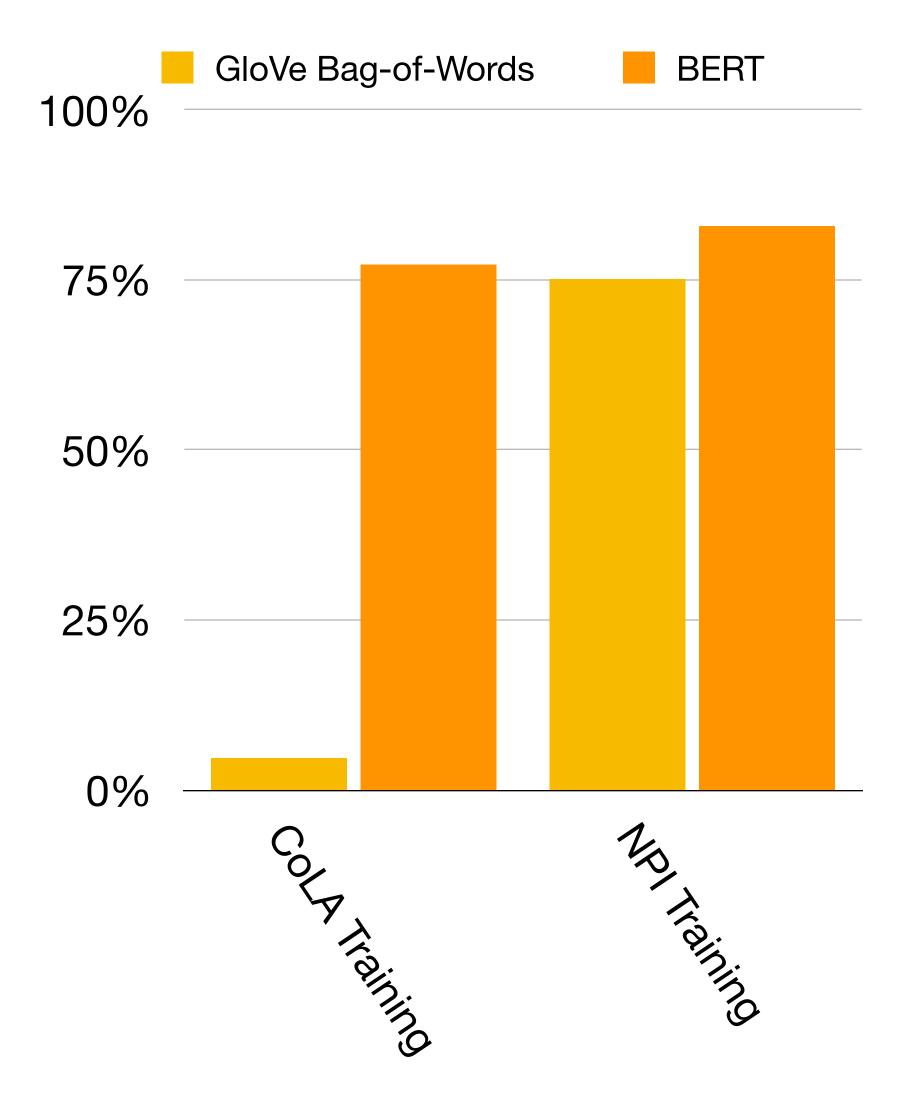
Train:

The CoLA general acceptability corpus or NPI training set (hold-one-out by environment)

Test:

NPI environment test sets

Metric:



- (1) Mary hasn't eaten any cookies.
- *Mary has eaten any cookies. (2)

Train:

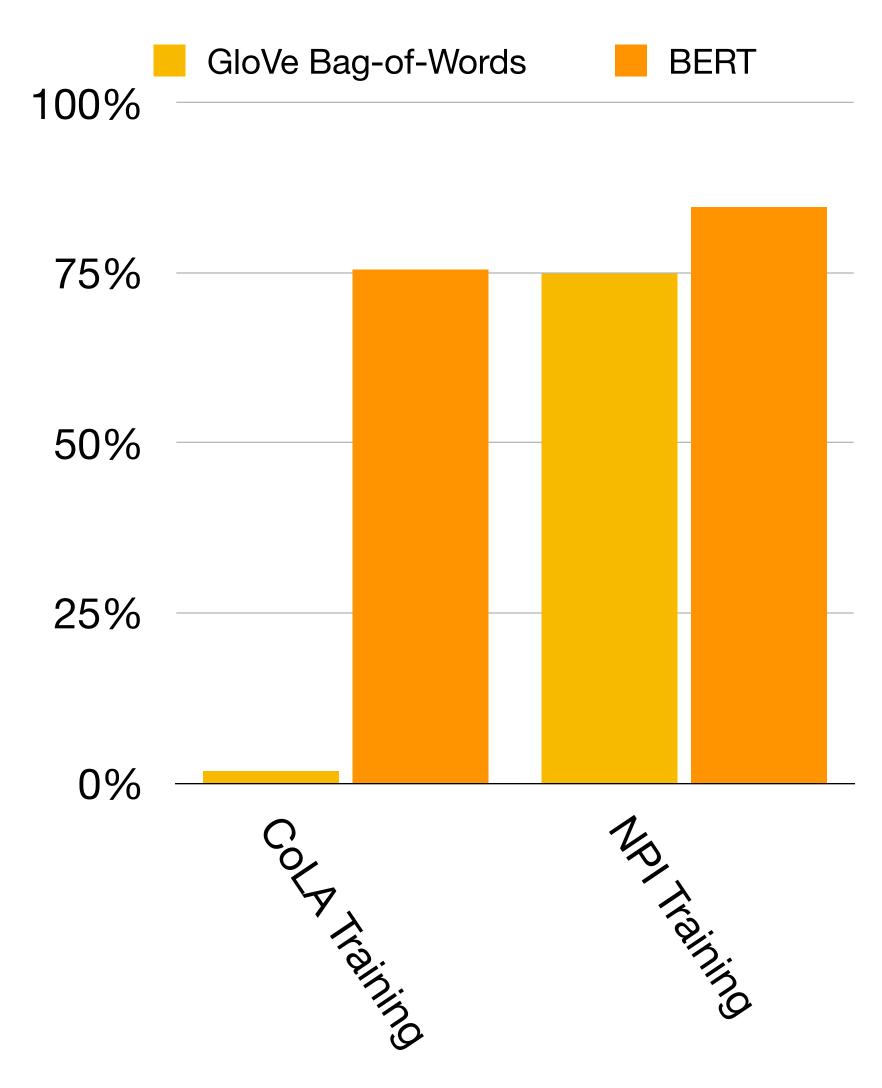
The CoLA general acceptability corpus or NPI training set (hold-one-out by environment)

Test:

NPI environment test sets

Metric:

Pair accuracy over acceptability: How often does the model label both versions of a sentence correctly?



BERT knows something about NPIs, but not all that much.

> "Mary has eaten any cookies. (2)

Train:

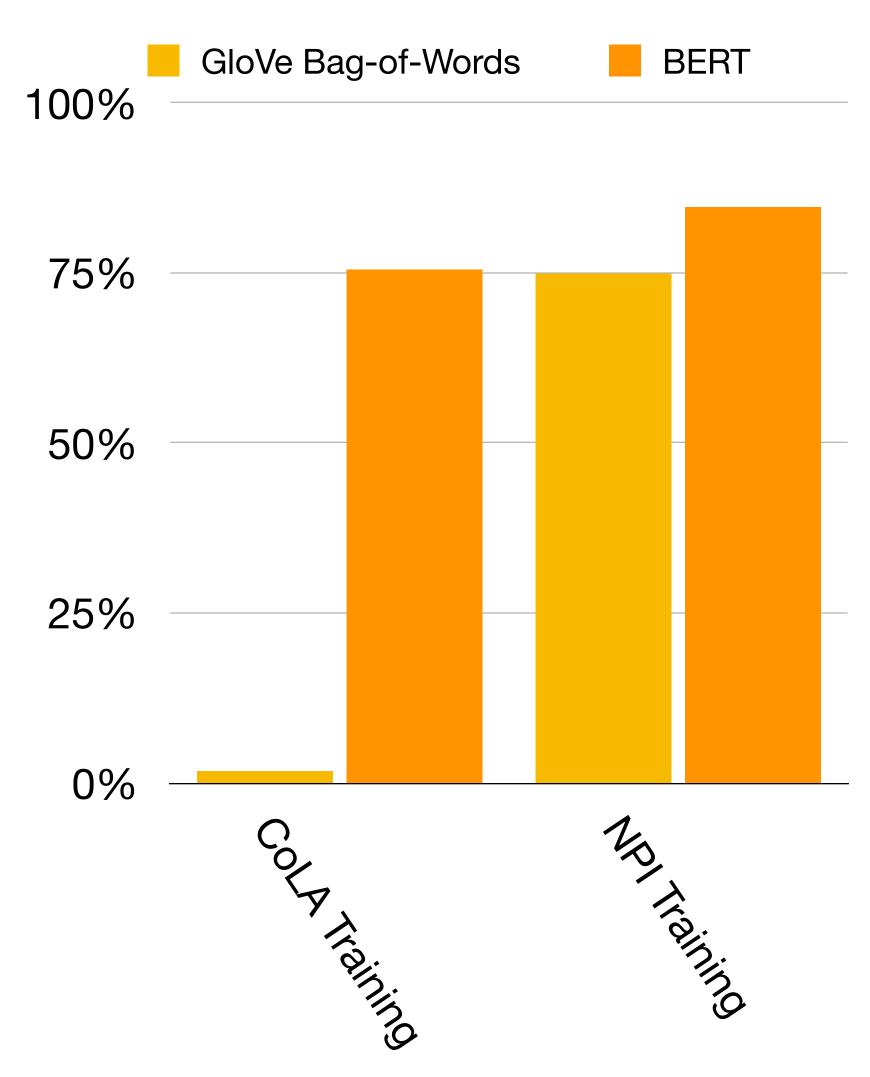
The CoLA general acceptability corpus or NPI training set (hold-one-out by environment)

Test:

NPI environment test sets

Metric:

Pair accuracy over acceptability: How often does the model label both versions of a sentence correctly?



- (1) Mary hasn't eaten any cookies.
- (2) *Mary has eaten any cookies.

Train:

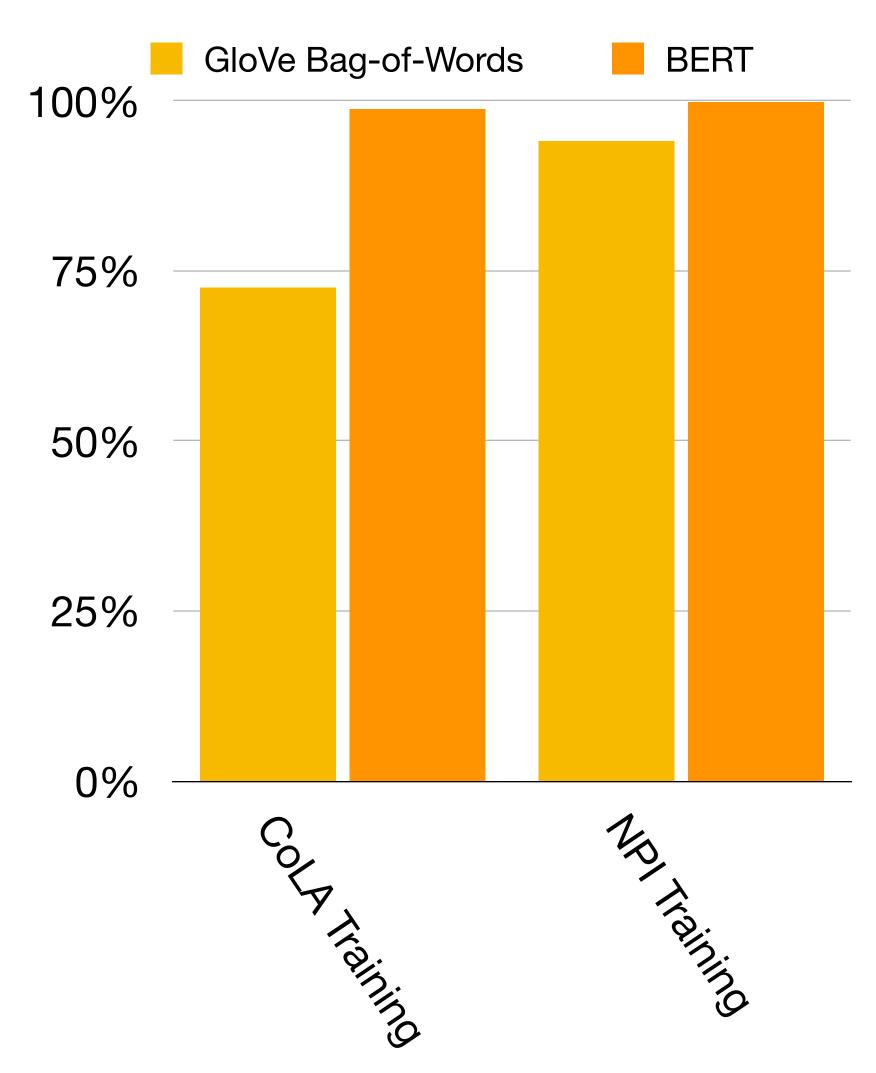
The CoLA general acceptability corpus or NPI training set (hold-one-out by environment)

Test:

NPI environment test sets

Metric:

Pair preference accuracy: How often does the model assign a higher probability of acceptability to the correct sentence?



BERT has complete and perfect knowledge of NPI licensing.

> "Mary has eaten any cookies. (2)

Train:

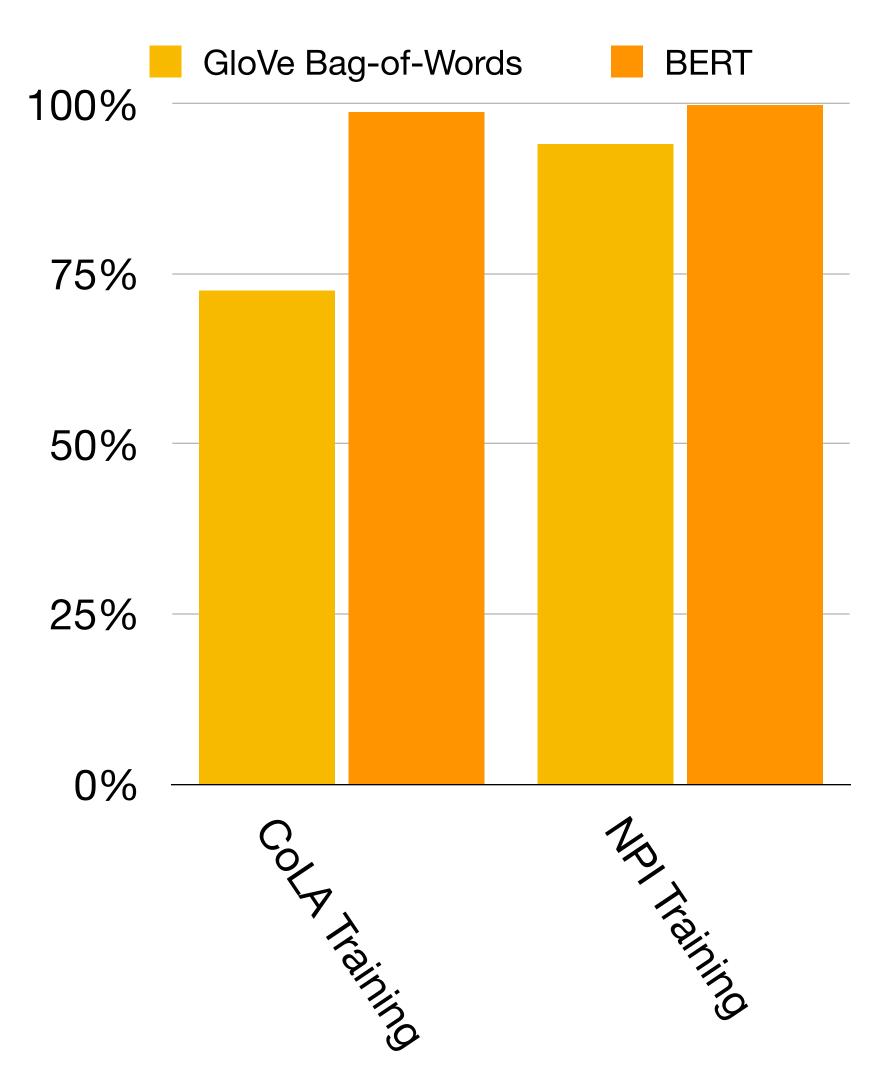
The CoLA general acceptability corpus or NPI training set (hold-one-out by environment)

Test:

NPI environment test sets

Metric:

Pair preference accuracy: How often does the model assign a higher probability of acceptability to the correct sentence?



What if we ask BERT directly?

- (1) Mary hasn't eaten any cookies.
- (2) *Mary has eaten any cookies.

Train:

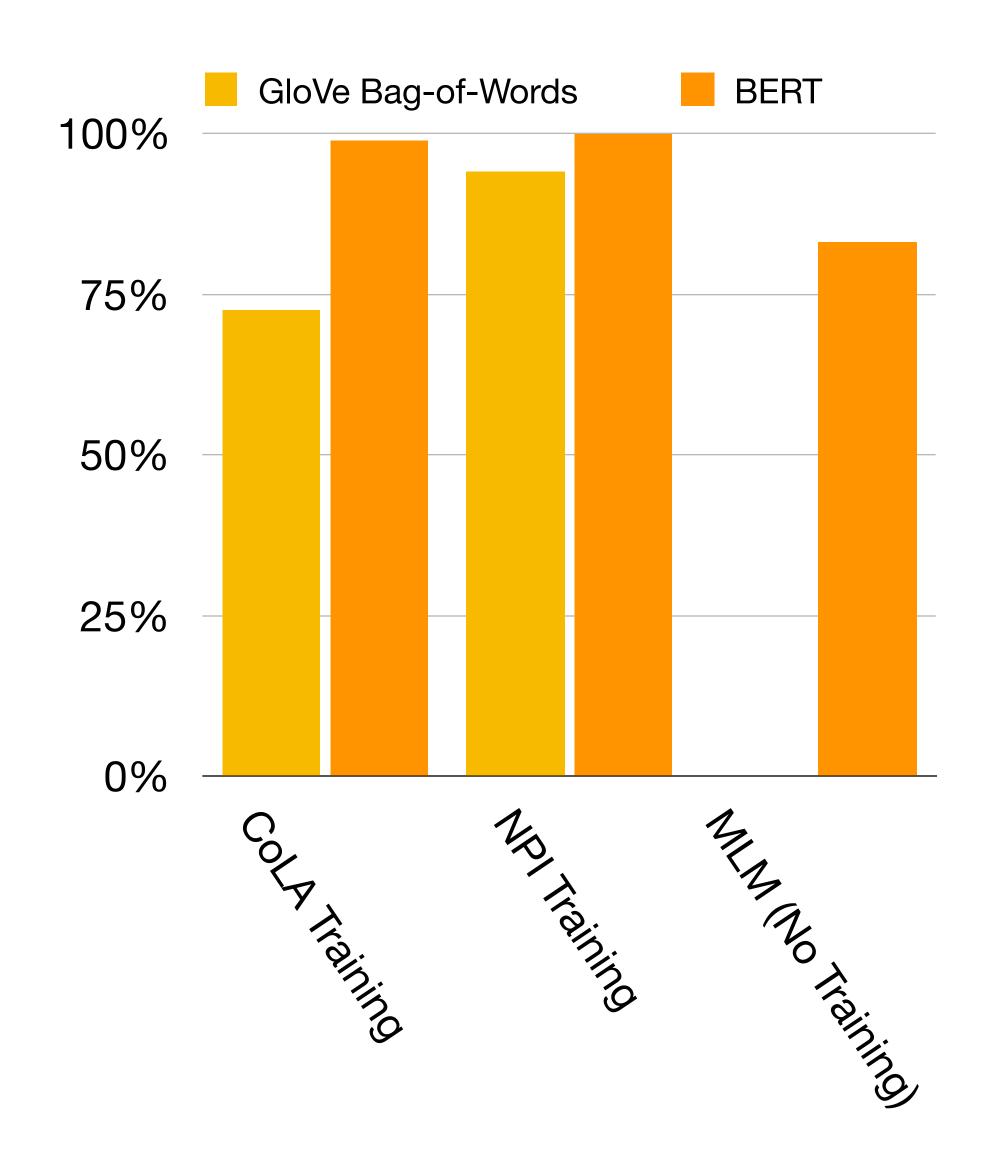
The CoLA general acceptability corpus or NPI training set (hold-one-out by environment) or use BERT's language modeling head directly

Test:

NPI environment test sets

Metric:

Pair preference accuracy: How often does the model assign a higher probability of acceptability to the correct sentence?



What if we ask BERT directly?

BERT does better than chance (50%), but not especially well.

> Mary has eaten any cookies. (2)

Train:

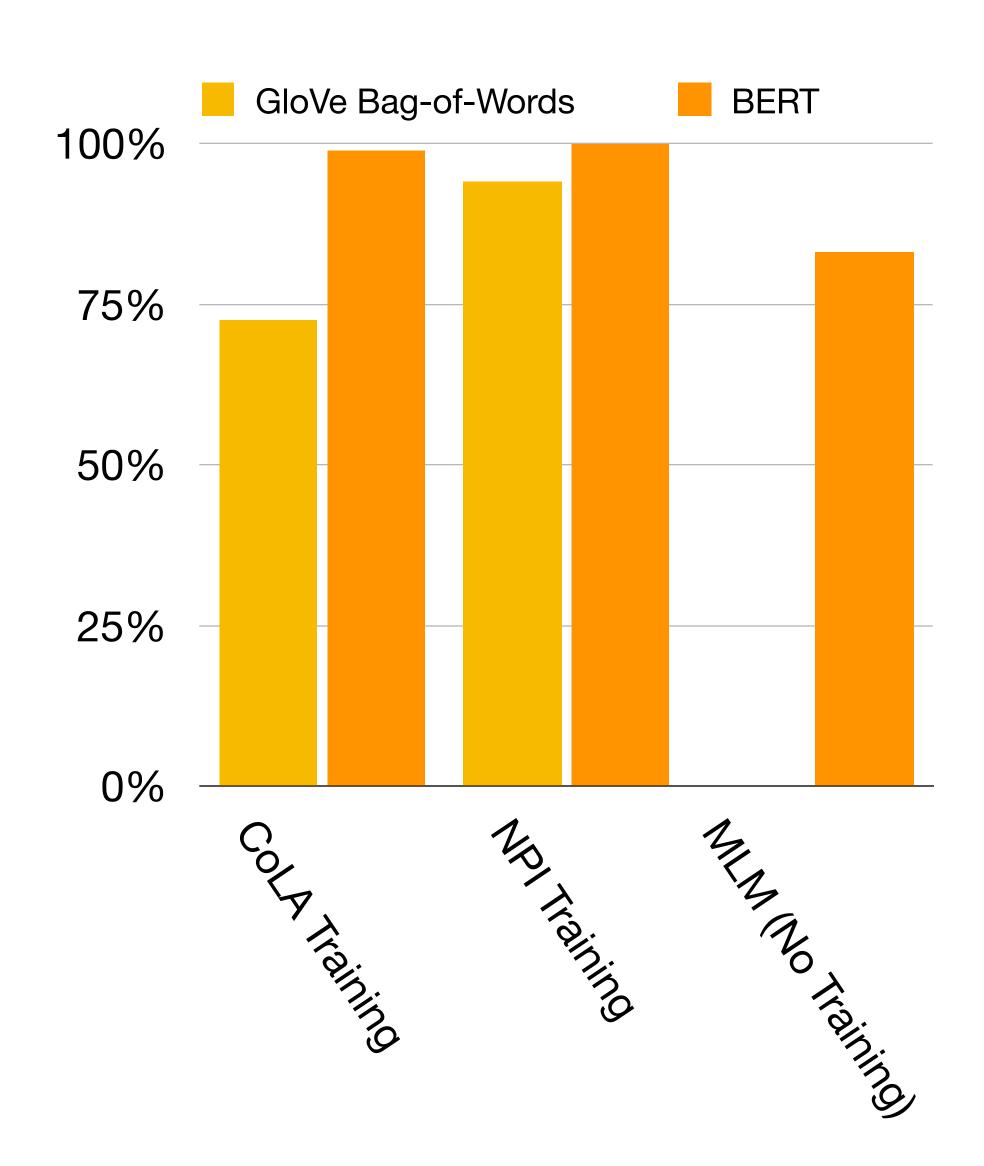
The CoLA general acceptability corpus or NPI training set (hold-one-out by environment) or use BERT's language modeling head directly

Test:

NPI environment test sets

Metric:

Pair preference accuracy: How often does the model assign a higher probability of acceptability to the correct sentence?



What if we use probing classifiers?

- Those boys wonder **whether** [the doctors *ever* went to an art gallery.]
- *Those boys *ever* wonder **whether** [the doctors went to an art gallery.]
- Those boys wonder **whether** [the doctors *often* went to an art gallery.]
- Those boys often wonder whether [the doctors went to an art gallery.]
- *Those boys say **that** [the doctors *ever* went to an art gallery.]
- *Those boys *ever* say **that** [the doctors went to an art gallery.]
- Those boys say **that** [the doctors *often* went to an art gallery.]
- Those boys *often* say **that** [the doctors went to an art gallery.]

Train:

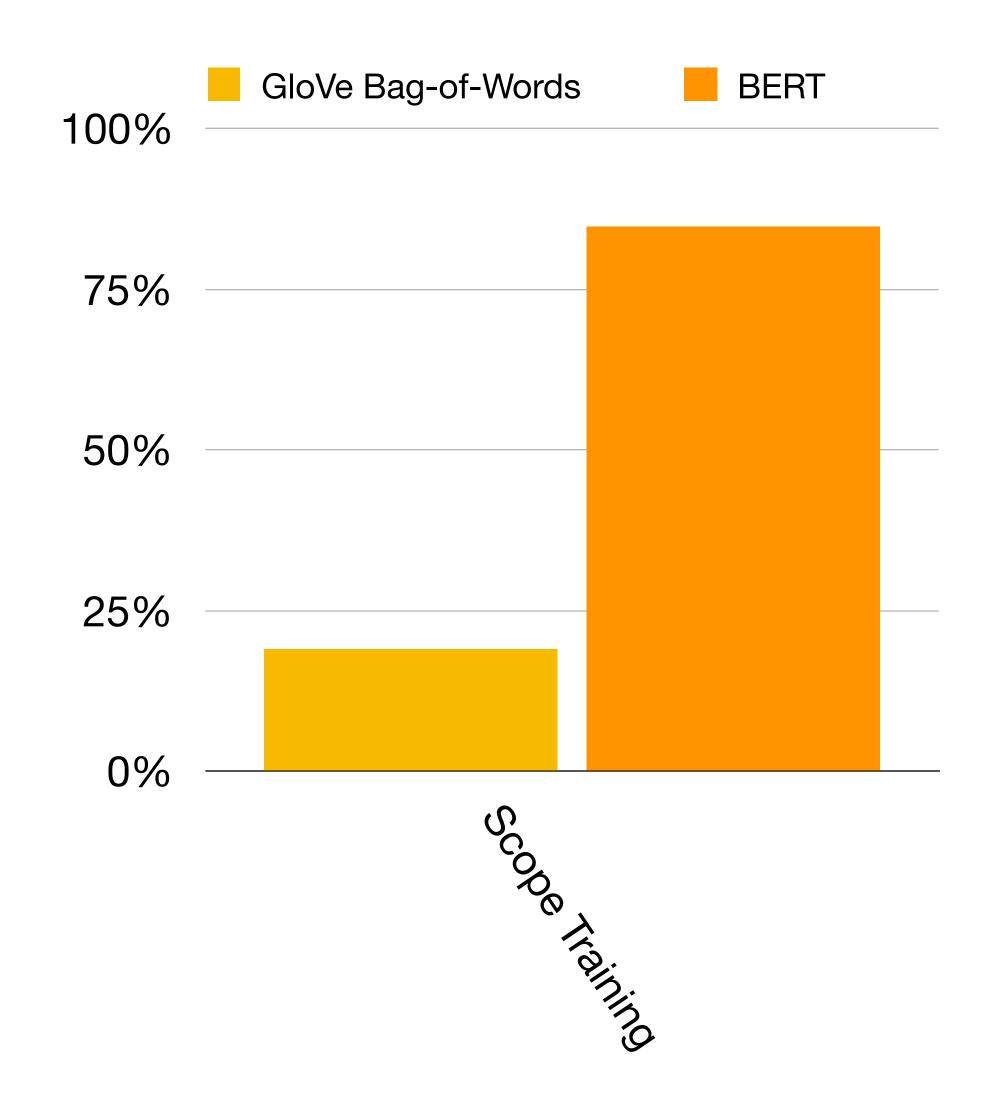
Scope prediction task, training only a small classifier without fine-tuning BERT (hold-one-out over environments)

Test:

Scope prediction task

Metric:

Matthews Correlation (MCC) for scope judgment



What if we use probing classifiers?

BERT knows a bit about NPIs, but its not perfect. *Those boys ever (the doctors went to an art gallery.) Those boys say the doctors *often* went to an art gallery.] say **that** [the doctors went to an art gallery.] Those boys of

Train:

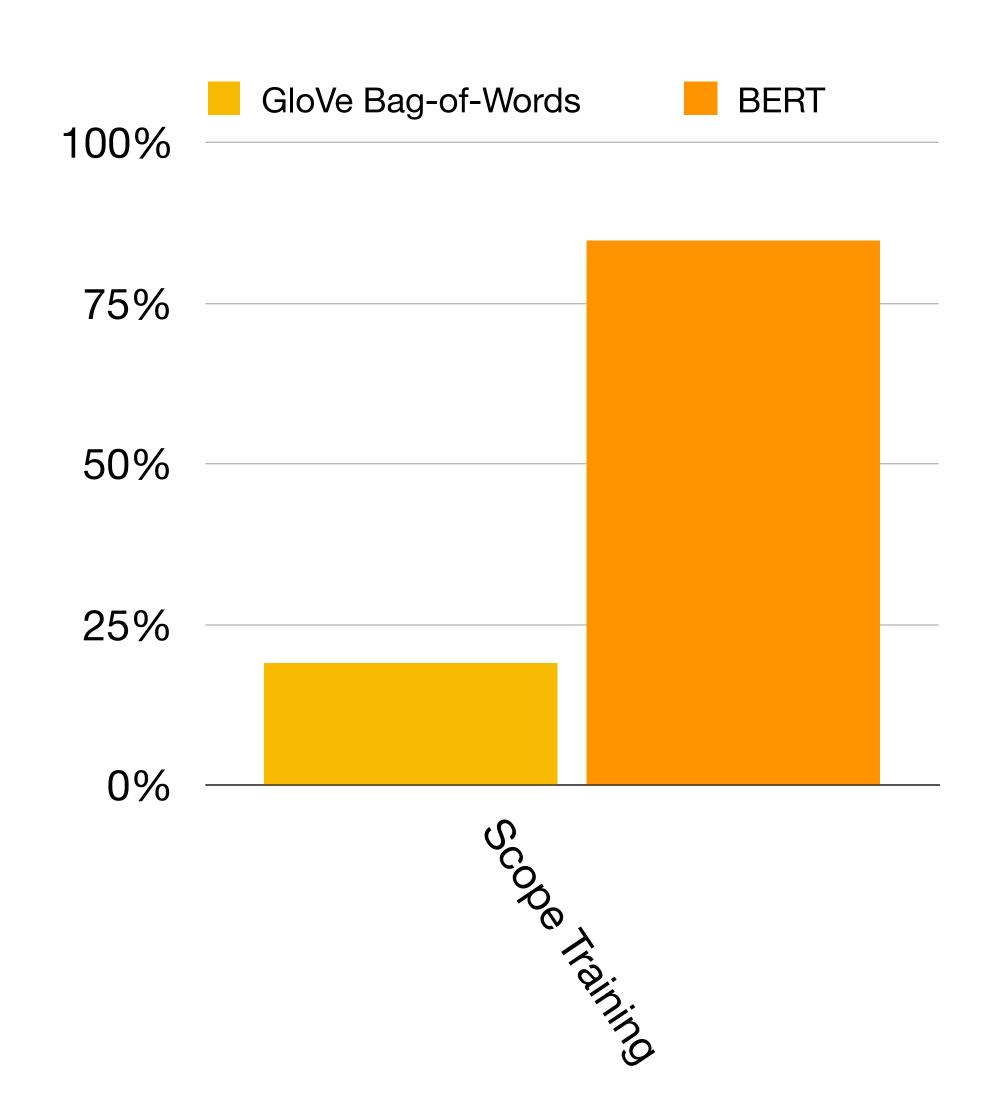
Scope prediction task, training only a small classifier without fine-tuning BERT (hold-one-out over environments)

Test:

Scope prediction task

Metric:

Matthews Correlation (MCC) for scope judgment



What if we use pro

BERT knows a bit about NPIs, but its not perfect.

Scope predic

Met

art gallery *Those boys ever the doctors were Those boys say the doctors ofter to an art gallery. say that [the cors went to an art gallered Those boys of

GloVe Bag-of-Words **BERT** 100%

BERT does better than chance, but not especially well.

nments) Test:

BERT knows something about NPIs, but not all that much.

BERT has complete and perfect knowledge of NPI licensing.

BERT knows something about NPIs, but not all that much.

Maining

Back to evaluation...

There are plenty of big open problems in NLU, but doesn't seem possible to build another GLUE-style benchmark again soon.

 Is our ability to build models improving faster than our ability to build hard evaluation sets?

Give up and work on something else?

- I guess?
- or...

Use adversarial filtering to semi-automatically create datasets that are hard for SotA models?

- Good source of data for training...
- Okay source of data for local hill-climbing evaluation...

Use adversarial filtering to semi-automatically create datasets that are hard for SotA models?

- Good source of data for training...
- Okay source of data for local hill-climbing evaluation...
- ...but using these datasets as benchmarks risks encouraging models that are different but not better.
- Mitigated by fast iteration times, but logistics get complicated.

Build *growing* benchmarks like Build-it-Break-it or ORB, where experts can add test data to target weaknesses.

- Similar risks, though to a lesser degree.
- Some risk that we lose sight of the task we're trying to solve.

Restrict the task training sets, or focus on zero-shot or few-shot adaptation to new tasks.

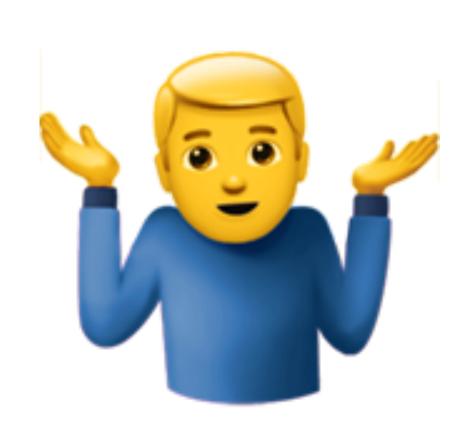
- Likely to encourage good representations...
- ...but may not reflect the setting that we're interested in.

Build big, high-quality datasets?

- Aim for hard examples with human performance >99%.
- Doable! But slow, expensive, risky work.

One More Open Question

Is it possible to build benchmarks *for bias* that are robust and realistic enough that it's worthwhile to hill-climb on them?



Thanks!

SCHMIDT FUTURES

